The purpose of this study is to confirm the structural relationship between parental support, relationships with teachers, and stress variables on adolescents' mental health. Among the panel of 7,324 third-year high school students in the 8th survey in 2020 of the ‘Korean Education Longitudinal Study 2013’ conducted by the Korea Educational Development Institute, 6,054 people who participated in the survey were selected as research subjects. Frequency analysis, descriptive statistics, correlation analysis, and Bayesian structural equation model path analysis were performed using SPSS 26.0 and Amos 24.0. First, adolescents' parental support had a statistically significant positive effect on their mental health. Second, the relationship with teachers had a negative effect on stress and a positive effect on mental health. Third, it was confirmed that stress has a negative effect on the mental health of adolescents. Fourth, relationships with teachers had a positive effect on mental health with stress as a mediating variable. This study identified predictors that affect mental health at the point when adolescents' mental health problems become serious, and the research results can serve as data related to policy establishment and program operation in educational settings to improve mental health.
PURPOSES : This study aimed to estimate road pavement life expectancy using Bayesian Markov Mixture Hazard Model, to support infrastructure asset management. In addition, the life expectancies for the pavement condition index were compared among regional construction and management administrations.
METHODS : Eleven years of National Highway road pavement monitoring data fused with ESAL (Equivalent Single Axle Loads), SNP (Structural Number of Pavement, an indicator of structural capacity), and average low temperature, total rainfall, and de-icing were used for the deterioration modeling. Deterioration modeling was performed through the Bayesian Markov Mixture Hazard Model.
RESULTS : The expected life expectancy of the crack was estimated at 12.28 to 18.51 years, rut depth was estimated at 15.93 to 25.3 years, and the International Roughness Index was estimated at 10.44 to 14.33 years. It was also confirmed that the heterogeneity factor proposed in the Bayesian Markov Mixture Hazard Model could be used to analyze group characteristics and differences in the benchmark.
CONCLUSIONS: This study provided important information in that it compared the life expectancies and structural characteristics of the pavement condition indexes among regional construction and management administrations. Based on this result, it is expected that a pavement structure design and maintenance strategy suitable for deterioration characteristics among regional construction and management administrations will be established.
This study is aimed to take a stock assessment of blackthroat seaperch Doederleinia seaperch regarding the fishing effort of large-powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery. For the assessment, the state-space model was implemented and the standardized catch per unit effort (CPUE) of large powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery which is necessary for the model was estimated with generalized linear model (GLM). The model was adequate for stock assessment because its r-square value was 0.99 and root mean square error (RMSE) value was 0.003. According to the model with 95% confidence interval, maximum sustainable yield (MSY) of Blackthroat seaperch is from 2,634 to 6,765 ton and carrying capacity (K) is between 33,180 and 62,820. Also, the catchability coefficient (q) is between 2.14E-06 and 3.95E-06 and intrinsic growth rate (r) is between 0.31 and 0.72.
This presentation introduces a methodological framework that analyzes a model of destination image formation (Baloglu & McCleary 1999; Beerli & Martin 2004). Specifically, the main aims of this study are to investigate what type of stimulus factors (information sources) are connected to the formation of destination image, and to explore if there is a connection between their strength of willingness to visit a destination and their patterns to associate with the destination. The study employs an advanced nonparametric Bayesian relational model (Glückstad, Herlau, Schmidt, Rzepka, Araki and Mørup 2013; Mørup, Glückstad, Herlau & Schmidt, 2014) for a two-steps analysis . The first step attempts to segment consumers according to patterns of attributes consumers associate with three arbitrary selected destinations. The second step statistically analyzes latent structural patterns per segment by contrasting two independent datasets, one consisting of information sources and members of a segment and another consisting of destination attributes and the members of the segment. The results of two-steps analysis demonstrated that patterns of attributes respondents associate with the three selected destinations differ across individuals and the applied method enabled to segment respondents according to the differences, and consumers’ associations, their willingness to visit the destinations and types of information sources they have accessed to learn about the destinations are connected to each other.
PURPOSES : The objective of this paper is to develop a pavement performance model based on the Bayesian algorithm, and compare the measured and predicted performance data. METHODS : In this paper, several pavement types such as SMA (stone mastic asphalt), PSMA (polymer-modified stone mastic asphalt), PMA (polymer-modified asphalt), SBS (styrene-butadiene-styrene) modified asphalt, and DGA (dense-graded asphalt) are modeled in terms of the performance evaluation of pavement structures, using the Bayesian algorithm. RESULTS : From case studies related to the performance model development, the statistical parameters of the mean value and standard deviation can be obtained through the Bayesian algorithm, using the initial performance data of two different pavement cases. Furthermore, an accurate performance model can be developed, based on the comparison between the measured and predicted performance data. CONCLUSIONS : Based on the results of the case studies, it is concluded that the determined coefficients of the nonlinear performance models can be used to accurately predict the long-term performance behaviors of DGA and modified asphalt concrete pavements. In addition, the developed models were evaluated through comparison studies between the initial measurement and prediction data, as well as between the final measurement and prediction data. In the model development, the initial measured data were used.
본 논문에서는 페러데이 법칙을 이용한 진동발전 장치를 지하철의 자갈도상과 콘크리트 도상의 분류에 따른 기전력 량을 분석 하였다. 지하철 2호선 서초~방배 구간의 자갈도상에서 콘크리트 도상 변경으로 동일한 전동차 운행속도로 동일 구간에서 차량운행에 의한 동특성을 분석하고 진동력발전 장치를 이용해 얻어질 수 있는 기전력 량을 분석하였다. 또한 페러데이의 법칙에 의한 유도 기전력 식에 의한 계산 기전력 량과 발전 장치에 의한 관측 기전력 량을 베이지안 회귀 분석 및 상관분석을 통하여 철도에 적용되는 모델에 대한 신뢰구간과 모델식을 각 도상별로 업데이팅하였다. 수정된 식을 이용한 기전력은 한 개의 진동발전 장치 당 콘크리트 도상에서 4mV, 자갈도상에서는 40mV의 전력을 얻을 수 있다.
This paper is intended to develop a Bayesian decision model for the repair of deteriorating system. A non-homogeneous Poisson process with a power law failure intensity function is used to describe the behavior of the deteriorating repairable system. The decision on whether to have minimal repair or imperfect repair should be made on the occurrence of a failure. However, it is difficult to make a reasonable decision due to many uncertainties intrinsic in repair actions. In this paper, prior distributions are used in order to analyze the uncertainties embedded in the decision alternatives. Especially, a prior distribution for imperfect repair with probabilistic reduction in the failure intensity is proposed. In addition, mathematical expressions to calculate the expected prior loss of each repair alternative are proposed.
This paper is intended to develop a Bayesian decision model for the repair of deteriorating system. A non-homogeneous Poisson process with a power law failure intensity function is used to describe the behavior of the deteriorating repairable system. The decision on whether to have minimal repair or imperfect repair should be made on the occurrence of a failure. However, it is difficult to make a reasonable decision due to many uncertainties intrinsic in repair actions. In this paper, prior distributions are used in order to analyze the uncertainties embedded in the decision alternatives. Especially, a prior distribution for imperfect repair with probabilistic reduction in the failure intensity is proposed. In addition, mathematical expressions to calculate the expected prior loss of each repair alternative are proposed.
가뭄재해는 다른 재해와 다르게 광범위한 공간에 걸쳐서 충분한 강우가 발생하기 전까지 오랜 기간 동안 발생되는 특성이 있다. 위성 영상은 시공간적으로 지속적인 강수량 관측을 제공할 수 있다. 본 연구는 위성 영상 기반의 강수자료를 활용하여 기상학적 가뭄 전망 모형을 개발하였다. PERSIANN_CDR, TRMM 3B42와 GPM IMERG 영상을 활용하여 강수 자료를 구축한 뒤, 표준강수지수(SPI)를 기반으로 기상학적 가뭄을 정의 하였다. 과거의 가뭄 정보와 물리적 예측 모형 기반의 가뭄 예측 결과를 결합할 수 있는 베이지안 네트워크 기반 가뭄 예측 기법을 이용하여 확률론적 가뭄 예측 결과를 생산하였으며, 가뭄 예측결과를 가뭄 전망 의사결정 모형에 적용하여 가뭄 전망 결과를 도출하였다. 가뭄 전망 정보는 가뭄 발생, 지속, 종결, 가뭄 없음의 4단계로 구분하였다. 본 연구의 가뭄 전망 결과는 ROC 분석을 통하여 물리적 예측 모형인 다중모형 앙상블(MME)을 활용한 가뭄 전망 결과와 전망 성능을 비교하였다. 그 결과, 2∼3개월 가뭄 전망에 대한 가뭄 발생 및 지속의 단계에서는 MME 모형보다 높은 전망 성능을 보여주었다.
Agricultural meteorological information is an important resource that affects farmersʼ income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio–temporal model suggests replacements for missing values because the meteorological information includes spatio–temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root–mean–square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.
Copula 함수 기반의 모형들은 가뭄빈도해석 및 수문시계열분석 등 수문학적 모델링을 위해 다각적으로 활용되고 있다. 그러나 기존 연구에서는 Copula 함수 및 주변확률분포 매개변수에 대한 불확실성을 정량적으로 평가할 수 있는 모형의 개발 사례는 국내외적으로 미진한 실정이다. 이러한 점에서 본 연구에서는 기존 Copula 모형에 Bayesian 기법을 도입하여 매개변수의 불확실성을 평가할 수 있는 이변량 가뭄빈도해석 기법을 개발 하였다. 본 연구에서는 우선적으로 모의자료를 대상으로 모형의 적합성을 평가하였으며, 모형 적용결과 가정한 매개변수를 정확하게 재추정하는 것을 확인할 수 있다. 최종적으로 기 개발된 Bayesian Copula 함수 기반의 이변량 가뭄빈도해석 모형을 한강유역에 적용하여 최근 2013~2015 년에 가뭄 사상을 평가하였다. 서울, 경기 및 강원 지역에서 특히 가뭄이 심한 것으로 나타났으며, 대부분의 지역에서 결합재현기간이 100년을 상회하는 것으로 평가되었다. 본 연구를 통해 제안된 모형의 검증과정과 도출된 결과를 기준으로 판단해보면 가뭄자료의 분포특성 및 자료간의 상관성을 효과적으로 재현하는데 유리할 뿐만 아니라 매개변수의 불확실성을 평가할 수 있는 장점을 확인할 수 있었다.
This paper used the Bayesian model averaging (BMA) with gamma distribution that takes the form of probability density functions to calibrate probabilistic forecasts of wind speed. We considered the alternative implementation of BMA, which was BMA gamma exchangeable model. This method was applied for forecasting of wind speed over Pyeongchang area using 51 members of the Ensemble Prediction System for Global (EPSG). The performances were evaluated by rank histogram, means absolute error, root mean square error, continuous ranked probability score and skill score. The results showed that BMA gamma exchangeable models performed better in forecasting wind speed, compared to the raw ensemble and ensemble mean.
In this study, we analyzed the performance of calibrated probabilistic forecasts of surface temperature over Pyeongchang area in Gangwon province by using Bayeisan Model Averaging (BMA). BMA has been proposed as a statistical post-processing method and a way of correcting bias and underdispersion in ensemble forecasts. The BMA technique provides probabilistic forecast that take the form of a weighted average of Gaussian predictive probability density function centered on the bias-corrected forecast for continuous weather variables. The results of BMA to calibrate surface temperature forecast from 24-member Ensemble Prediction System for Global (EPSG) are obtained and compared with those of multiple regression. The forecast performances such as reliability and accuracy are evaluated by Rank Histogram (RH), Residual Quantile-Quantile (R-Q-Q) plot, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and the Continuous Ranked Probability Score (CRPS). The results showed that BMA improves the calibration of the equal weighted ensemble and deterministic-style BMA forecasts performs better than that of the deterministic forecast using the single best member.
수위-유량 관계곡선(rating curve)은 수위표에서 관측된 수위 및 유량을 이용하여 만들어진 회귀분석식을 의미하며, 하천의 수위를 유량으로 환 산하는 방법으로 일반적으로 활용되고 있다. 그러나 수위-유량 관계곡선식에서 저수위와 고수위와 분리 및 매개변수 추정에 있어 불확실성을 고려 한 해석은 이루어지지 않고 있다. 이러한 이유로 본 연구에서는 수위-유량 관계곡선식에서 매개변수 추정 및 저·고수위 분리시 발생하는 문제점을 개선하기 위해 Bayesian 기법을 도입하였으며, 수위-유량 관계곡선식의 매개변수의 추정과 더불어 불확실성을 정량화 하는데 목적을 두었다. 이 와 더불어 Bayesian 모형 기반 Multi-Segmented 수위-유량 관계곡선(Bayesian M-S)을 활용하여 저·고수위를 분리할 수 있는 새로운 수위-유량 관계곡선을 개발하고 기존 수위-유량 관계곡선과 비교·분석을 실시하였다. 그 결과 본 연구에서 개발한 Bayesian M-S 기법이 기존 수위-유량 관계 곡선식 보다 개선된 결과를 도출할 수 있었으며, 수위-유량 관계곡선식의 신뢰구간을 제시하는데 유리한 것을 확인할 수 있었다.
댐 위험도 해석시 수문학적 변량(강수, 유출 및 수위)들의 상호관계를 고려한 체계적인 분석과정이 요구된다. 그러나 기존 댐 위험도 해석 연구에서는 변량간의 체계적인 관계 평가를 수행하는데 있어서 한계점을 나타내고 있다. 이러한 점에서, 본 연구에서는 수리·수문학적 변량간의 관계를 효과적으로 평가하고자 Bayesian Network 기반의 댐 위험도 해석 기법을 개발하였다. 실제 댐에 대해서 제안된 모형을 적용한 결과 파괴인자간의 상호관계 규명 및 불확실성을 평가하는데 있어서 기존 연구보다 쉽게 가장 큰 파괴인자를 파악할 수 있는 장점이 있었다. 이와 더불어 다양한 시나리오에 따른 댐의 안정성을 파괴확률 및 예상피해의 함수인 위험도로 평가할 수 있도록 하였다. 즉, 기존 댐 위험도 기법으로 수행한 결과에서는 월류 확률이 도출 되지 않았지만, Copula 함수를 도입하여 댐 초기수위를 고려한 결과 댐 월류 확률이 발생하였 으며, 피해결과 역시 크게 증가하고 있는 것을 확인할 수 있었다. 이러한 결과를 기반으로 향후 댐의 보수보강 등의 우선순위 결정을 위한 도구로서 활용이 가능할 것으로 판단된다.
본 연구에서는 Bayesian 통계기법을 활용한 지역빈도해석 모형을 기반으로 외부 기상인자 및 공간정보에 의한 확률강우량의 변동성을 고려할 수 있는 Bayesian 지역빈도해석 기법을 개발하였다. 기존 지역빈도해석에서 분석시 확률분포형의 매개변수는 과거와 일정하다는 정상성을 기본 가정으로 연구를 진행해 왔다. 이는 평균의 변동성 및 확률강우량 추정시 최근 기후변화의 영향을 효과적으로 고려하지 못하는 단점이 존재하였다. 또한 우리나라의 경우 산악지형이 약 70% 이상을 차지할 정도로 지형적 및 계절적으로 강수량 패턴이 불분명하여 확률강우량 추정시 공간적 변동성을 고려할 수 있는 새로운 개념의 지역빈도해석의 필요성이 대두되고 있다.
최근 국내 연구에서는 유역내 면적강우량 환산시 극치계열의 강수자료를 이용하여 지점빈도해석(point frequency analysis, PFA) 또는 지역빈도해석(regional frequency analysis, RFA)을 수행하여 수자원 설계에 이용되고 있다. 그러나 기존 지역빈도해석연구에서 매개변수 산정시 외부인자(covariate)를 고려할 수 없는 단점이 존재하며, 불확실성을 정량적으로 해석하는데 어려움이 있다. 이와 더불어 기존 RFA에서는 관측지점을 중심으로 산정된 확률강우량은 Thiessen망을 통해 유역면적강우량으로 변환하여 사용하는 것이 일반적이나 우리나라의 산지특성과 여름철 강우처럼 시공간적 변동성이 큰 경우 면적평균강우를 추정하는데 있어서 오차가 크게 발생할 수 있다고 알려지고 있다.
이러한 이유로 본 연구에서는 Bayesian 통계기법을 활용하여 매개변수 추정시 기상인자 및 공간정보가 고려된 지역빈도해석을 수행할 수 있는 모형을 개발하였으며 다음과 같이 연구를 진행하였다. 첫째, 한강유역내 18개 관측소를 대상으로 연도별 여름강수량을 추출하고 이들 관측소의 여름강수에 물리적인 영향을 미치는 기상인자로서 SST(sea surface temperature)를 외부인자로 채택하였다. 둘째, 극치분포를 잘 재현한다고 알려져 있는 Gumbel 분포를 확률분포형으로 선정하였으며, Gumbel 분포 매개변수 산정시 앞서 추출한 SST와 한강 유역내 공간정보를 활용하여 매개변수를 산정하였다. 마지막으로 Bayesian 기법을 도입하여 산정된 매개변수의 불확실성 구간을 제시하였으며, 추정된 확률강우량 또한 불확실성 구간을 제시하여 신뢰성 있는 연구를 수행하였다.