검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        2.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 GFRP관을 상수도관으로 사용하기 위해 테스트베드를 설치하여 지중매설된 관의 구조적 거동에 미치는 영향을 조사하였다. 또한, GFRP관의 역학적 성질을 조사하고 관 강성을 추정하였다. KS규격에서 제시하고 있는 허용드로우와 고압력(사용압력의 1.5∼2.0배), 트럭하중을 적용시켜 관 내부와 외부의 복합하중이 작용할 경우 관 내압의 변화와 관의 거동을 확인하였다. 그 결과, 상수관으로 GFRP관을 장기 사용하여도 충분한 내압을 가지고 있음을 확인하였다.
        4,000원
        3.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        콘크리트관은 하수관으로 널리 쓰이지만, 중량이 무거워 취급이 곤란한 단점이 있다. 또한 하수 및 해수 지역에 매설될 경우 황산수소(H2S)와 염화물에 의한 화학적 침식 등으로 인해 균열, 단면 감소 등 각종 열화현상이 발생하게 되어 파형강관을 대신하여 사용하지만 시공특성상 파손이 생기거나 매설지역에 부등침하가 존재하거나 과도한 외부압력이 작용할 경우 누수 또는 파손이 발생하여 관거로서의 기능이 저하될 우려가 있다. 이에 본 논문에서는 3겹으로 코팅된 수지파형강관(CCSP)을 파형강관 대신 하수관에 적용하기 위한 연구를 수행하였으며 우선 CCSP를 화학약품에 침지한 후 마모율 및 중량감소 등을 통해 화학저항성을 알아보았다. 특히 해안가에 시공될 경우 장기재령 내구성능을 확인하기 위해 부산 감만항 인근에 수지파형강관을 매설한 후 재령 10년 및 15년이 경과한 시점에 피복부착력을 확인하기 위해 염수분무, 핀홀, 음극박리시험을 실시하였으며 외압에 대한 저항성을 알아보기 위해 재하시험을 실시하였으며 그 결과 모든 항목에서 KS품질 기준을 만족하고 관거로서의 소요성능을 확보하고 있어 장기재령 내구성을 확보하고 있음을 확인하였다.
        4,000원
        4.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the sewer pipes, reinforced concrete pipes and concrete pipes are mostly used. However, it is difficult to ensure the long-term durability of the pipe due to the corrosion of the rebar which is used for the reinforcement of the concrete. Also, reinforced concrete pipes are difficult to secure watertightness due to deterioration and corrosion by hydrogen sulfide. In order to solve such problems, research on using sewer pipes made of plastic materials is being actively conducted. When soil pressure and live load act on the buried flexible pipe, the load acting on the pipe is transferred to the surrounding soil. So, the flexible pipe will support the load with the surrounding soil together. It is difficult to predict these behaviors theoretically and clearly. Therefore, the design equation for the buried flexible pipe is analyzed by adopting theoretically idealized assumptions and it is estimated through experimental studies that it is similar to the actual structural behavior. In this paper, the mechanical properties of the soil and the polyethylene pipe were considered in application of the method proposed in ASTM D 2412 to design the buried polyethylene pipe. Also, structural behavior of the pipe resisting external loads such as soil pressure was investigated to use a polyethylene pipe as the buried pipe and the long-term behavior of the polyethylene pipe was predicted by the compaction rate of surrounding backfill soil through the field test.
        4,000원
        5.
        2017.04 구독 인증기관·개인회원 무료
        In this study, we suggested the jacking method of small diameter sewer pipe for improving workability of the pipe at the weak ground. The jacking method minimizes the space and time in constructing small diameter sewer pipe. In addition, to use this method do not cause road restrictions during the construction period. In this study, the construction process of the small diameter sewer pipe is explained. In addition, to ensure the safety during construction, the design consideration such as earth pressure and the jacking force of the steel pipe, and safety against boiling of the ground were examined. For verify the safety of this jacking method, it is necessary to carry out an experiment to estimate the safety of main pipe under construction.
        6.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of existing buried pipes are composed of reinforced concrete. Reinforced concrete pipes have many problems such as aging, corrosion, leaking, etc. The polyethylene (PE) pipes have advantages to solve these problems. The plastic pipes buried underground are classified into a flexible pipe. National standard that has limited the long-term vertical deformation of the pipe to 5% for flexible pipes including PE pipe. This study presents a prediction for the long-term behavior of the polyethylene pipe based on ASTM D 5365. This prediction method is presented to estimate by using the statistical method from the initial deflection measurement data. We predict the behavior of long-term performance on the double-wall pipe and multi-wall pipe. As a result, it was found that the PE pipe will be sound enough more than 50 years if the compaction of soil around the pipe is more than 95% of the standard soil compaction density.
        4,000원
        7.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In general, polyethylene (PE), polyvinyl chloride (PVC), and ductile cast iron pipes are widely used in the water supply pipeline system. However, they have some disadvantages such as reduced durability due to material degradation, defects in connections, breakage of pipelines, and difficulties in continuous maintenance. To mitigate such problems, recently, research on durable and outstanding corrosion resistant glass fiber reinforced polymer plastic (GFRP) pipe is being actively conducted. GFRP is classified into the flexible pipe and when soil pressure and live load act on buried GFRP pipe, the load acting on the pipe is transferred to the surrounding soil. So, it should review the structural behavior and interaction between buried pipe and its surrounding soil because pipe will support the load with the surrounding soil together at the same time. To apply GFRP pipe for the water supply pipeline system, the structural reliability of GFRP water supply pipe buried underground should be investigated by examining the mechanical properties of GFRP pipe as well as the soundness of the pipe under buried state. The field test of buried pipe is conducted and the results are analyzed and discussed.
        4,000원
        8.
        2016.04 구독 인증기관·개인회원 무료
        In the water supply pipeline system polyethylene (PE), polyvinyl chloride (PVC), and ductile cast iron pipe are mostly used. However, they have some problems such as reduced durability due to material degradation, defects in connections, the pipelines breakage, and lack of continuous maintenance. Recently, research on durable and outstanding corrosion resistance glass fiber reinforced polymer plastic (GFRP) pipe is being actively conducted. GFRP is classified into the flexible pipe and when soil pressure and live load act on buried GFRP pipe, the load acting on the pipe is transferred to the surrounding soil. So, pipe will support the load with the surrounding soil. In this paper, to apply GFRP pipe for the water supply pipeline system, the structural reliability of GFRP water supply pipe buried underground should be investigated by examining the mechanical properties of GFRP pipe as well as the soundness of the pipe under buried state. The field test of buried pipe is conducted and the results are analyzed and discussed.
        9.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The industrialization and urbanization forced to increase the density of pipelines such as water supply, sewers, and gas pipelines. The materials used for the existing pipe lines are mostly composed of concretes and steels, but it is true that the development for more durable and efficient materials has been continued performed to produce long lasting pipe lines. Recently, underground pipes serve in diverse applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. In this paper, we present the result of investigation pertaining to the structural behavior of unplasticized polyvinyl chloride (PVC-U) flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, pipe stiffness, 4-point bending test, experimental and analytical studies are conducted. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is about 8% although there are significant variations in the mechanical properties of the pipe material. In addition, it was found by the 4-point bending test there is no problem in the connection between the pipes by coupler.
        4,000원
        10.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.
        4,000원
        11.
        2014.04 구독 인증기관·개인회원 무료
        Glass fiber reinforced thermosetting polymer plastic (GRP) is widely used in the construction industries due to the advantages of their superior mechanical and physical characteristics. Most of pipes are installed for long-term purposes and they should be safely installed in consideration of installation conditions because there are unexpected various terrestrial loading conditions. In this paper, we present the result of investigation for 253 days pertaining to the structural behavior of flexible pipes buried underground. From the buried test results, we predicted long-term, up to 60 years, ring deflection of GRP pipes buried underground based on the method suggested by the existing literature. It was found that the GRP flexible pipe is appropriate because 5% ring deflection limitation of 60 years could be satisfied.
        12.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Glass fiber reinforced plastic (GRP) pipes buried underground are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. In this paper, we present the result of investigation pertaining to the structural behavior of GRP flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, experimental and analytical studies are conducted. In addition, vertical ring deflection is measured by the field test and finite element analysis (FEA) is also conducted to simulate behavior of GRP pipe buried underground. Based on the results from the finite element analyses considering soil-pipe interaction the vertical ring deflection behavior of buried GRP pipe is predicted. In addition, analytical and experimental results are compared and discussed.
        4,000원
        13.
        2020.02 KCI 등재 서비스 종료(열람 제한)
        우리나라의 연평균 지진발생 횟수는 꾸준히 증가하는 추세이다. 최근경주와 포항에서 규모 5를 초과하는 지진이 발생하여 상수도관의 피해가 다수 보고된 바 있다. 따라서 국내에서도 상수도관의 지진에 대한 대비가 필요 할 것으로 판단된다. 상수도관은 상수도 공급시스템에 있어 혈관과도 같은 중요한 시설로서 다양한 규격과 재질의 배관으로 구성된다. 그러므로 지진에 의한 상수도관의 손상은 식수공급, 화 재진압 등의 문제를 일으키게 되며, 인명 및 재산피해를 유발하게 된다. 하지만 국내에서는 시험 검증 및 경험에 의해 매립상수도관의 내진 성능이 평가된 예를 찾아보기 어렵다. 지진에 의한 상수도관의 손상은 액상화와 단층과 같은 지반의 변위지배적인 거동으로 인하여 발생한다. 지진에 의한 상수도관의 주된 파손은 배관 이음부에 집중되며 특히 직경 200mm 이하 배관이 위험한 것으로 조사되었다. 따라서 본 연구에서는 호칭 150mm의 클램프로 고정된 이음을 가지는 iPVC 매립 상수도관에 대하여 시험적인 접근으로 내진 성능 및 내침하 성능을 평가 하였다.
        14.
        2013.10 서비스 종료(열람 제한)
        This study is intended to analyze the stress distribution of gas pipe buried in soft ground. A numerical analysis was carried out with API 5L X 65 steel gas pipe. The analytical model describes the typical cohesive sediment bed in domestic southwest coast, and embankment load is adopted for this research. Compared with residual soil conditions, the effective stress increases by 23∼26%. From the results, it can be suggested that the difference in soil stiffness would significantly affect the stress distribution of gas pipe buried in soft clay.