검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 234

        101.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flaring gas에서 CO2 제거를 위해 폴리술폰 고분자를 이용한 중공사막을 제조하였다. 제조된 중공사막은 1단과 2단 공정의 전산모사와 실제 공정을 통해서 CH4 농도 99% 이상 CO2 농도 1% 미만의 운전조건과 성능을 확인하였다. 또한 25 Nm3/h 급 bench scale CO2 분리막 연속공정에서 100시간의 운전시간 동안 CO2의 농도를 1% 미만으로 안정적으로 운전 하였고 이때의 CH4 회수율은 약 98%였다.
        4,000원
        102.
        2015.04 구독 인증기관·개인회원 무료
        This paper deals with the strengthening effect of reinforced concrete beams strengthened with carbon fiber sheets (CFSs). Fifteen strengthened reinforced concrete (RC) beams were experimentally evaluated to determine improvements in structural performance. Test parameters in this experimental study are strengthening ratios and strengthening methods of CFSs (I-S, I-W, U-S, U-W type). RC beams strengthened with CFSs were tested under sustaining load. Considering strengthening ratios and strengthening methods of carbon fiber sheets, structural performance and failure mode of test specimens were evaluated. The results show that maximum capacity of beams strengthened with CFSs is about 28.8% in I-S type, 20.5% in I-W type, 26.0% in U-S type, 28.7% in U-W type higher than that of control beam.
        104.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon fibers(ACFs) were prepared in this research from a polyacrylonitrile(PAN) precursor with the KOH(1~4 M) pretreatment and following activation at 800oC in a lab-scale. The sample ACFs were characterized according to their textural properties, and evaluated for CO2 adsorption capacity. The surface area and pore volume of ACFs increased according to the pretreatment with KOH; for example, 4M-KOH aqueous solution resulted in 1552.5 m2/g specific surface area and 0.605 cc/g pore volume. It also showed high CO2 adsorption amount(3.11 mmol/g) which showed a proportional increase with reaction pressure.
        4,000원
        105.
        2015.03 구독 인증기관 무료, 개인회원 유료
        기계의 무게를 대폭 줄이는 것을 목적으로 복합재료에 대해서 많은 연구를 진행하고 있다. 본 연구에서 탄소 섬유 강화 플라스틱과 알루미늄 폼으로 조합해서 만든 샌드위치에 대해서 압축 시뮬레이션 해석을 하였다. 또한 탄소 섬유 강화 플라스틱의 섬유의 배열방식은 [0/90/90/0]이다. 시뮬레이션 해석 방법은 ANSYS를 이용하여 실제와 같은 경계조건을 주고 유한요소해석을 진행하였다. 시편을 압축하는 동안에 탄소 섬유 강화 플라스틱과 알루미늄 폼이 그 접착력보다 크게 발생되어 떨어지는 형상이 일어났다. 또한 2438.3MPa의 최대 등가응력이 발생된 것을 확인하였다. 본 연구에서 나온 해석결과는 안전설계 및 복합재료의 개발에 필요한 자료를 제공할 수 있을 것으로 사료된다.
        3,000원
        106.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The ‘hybrid carbon-fiberreinforced mesophase-pitch-derived carbon-matrix’ composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.
        4,000원
        107.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, carbonized fibers were prepared by using acidically cross-linked LDPE fibers. The surface morphologies of the carbonized fibers were observed by SEM. The effects of cross-linking process temperatures were studied using thermal analyses such as DSC and TGA. The melting and heating enthalpy of the fibers decreased as the cross-linking temperature increased. The cross-linked fibers had a carbonization yield of over 50%. From SEM results the highest yield of carbonized LDPE-based fibers was obtained by cross-linking at a sulfate temperature (170oC). As a result, carbonation yield of the carbonized fibers was found to depend on the functions of the cross-linking ratio of the LDPE precursors.
        4,000원
        108.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of 0˚, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and 90˚, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was 90˚, which was perpendicular to the electromagnetic wave flow, as compared to 0˚, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.
        4,000원
        109.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, thermal treatment accompanied with different acid treatments was applied to a commercial coal tar pitch (CTP) to obtain a spinnable precursor pitch for carbon fiber. In the case of thermal treatment only, a relatively high reaction temperature of between 380˚C and 400˚C was required to obtain a softening point (SP) range of 220˚C-260˚C and many meso-phase particles were created during the application of high reaction temperature. When nitric acid or sulfuric acid treatment was conducted before the thermal treatment, the precursor pitch with a proper SP range could be obtained at reaction temperatures of 280˚C-300˚C, which were about 100˚C lower than those for the case of thermal treatment only. With the acid treatments, the yield and SP of the precursor pitch increased dramatically and the formation of meso-phase was suppressed due to the lower reaction temperatures. Since the precursor pitches with acid and thermal treatment were not spinnable due to the inhomogeneity of properties such as molecular weight distribution and viscosity, the CTP was mixed with ethanol before the consecutive nitric acid and thermal treatments. The precursor pitches with ethanol, nitric acid, and thermal treatments were easily spinnable, and their spinning and carbon fiber properties were compared to those of air blowing and thermal treated CTP.
        4,000원
        111.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The adsorption of volatile organic compounds (VOCs) was carried out using an activated carbon fiber (ACF) filter in an automobile. The adsorption capacities of formaldehyde, toluene, and benzene on an ACF filter were far better than those of a polypropylene (PP) mat filter and combined (PP+activated carbon) mat filter by batch adsorption in a gas bag. In a continuous flow of air containing toluene vapor through an ACF packed bed, the breakpoint time was very long, the length of the unused bed was short, and sharp "S" -type breakthrough curve was plotted soon after breakpoint, showing a narrow mass transfer zone of toluene on the ACF. The adsorption amount of toluene on the ACF filter was proportional to the specific surface area of the ACF; however, the development of mesopores 2-5 nm in size on the ACF was very effective with regard to the adsorption of toluene. The ACF air clarifier filter is strongly recommended to remove VOCs in newly produced automobiles.
        4,000원
        112.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, carbon fiber reinforced plastic and aluminum foam used in impact absorber are assembled and modelled. These models are investigated by impact simulation and verified by experimental data. Impact energies of 30 J, 60 J and 100 J are applied on these specimens by striker. For example the experiment for impact energy of 30 J is done and verified by referring to analysis result. As the structural safeties of these assembled composite materials can be anticipated through this study result, these simulation analysis results can be applied into real field.
        4,000원
        113.
        2014.02 구독 인증기관·개인회원 무료
        본 논문에서는 탄소 섬유 강화 플라스틱 샌드위치 복합재료의 시뮬레이션 해석을 통해 기계적 충격특 성에 대해 연구를 하였다. 스트라이커에 30 J, 60 J, 100 J의 충격에너지를 부여하여 고정 된 시험편에 충격을 가했다. 시뮬레이션 해석 방법은 ANSYS를 이용하여 실제와 같은 경계조건을 주며 유한요소해 석을 진행하였다. 그 결과는 100J의 충격에 에너지를 가해졌을 때 스트라이커가 시험편을 완전히 관통하는 모습이 보이고 충격에너지 30J과 60J일 때는 스트라이커가 시험편을 관통하지 않았다. 본 연구의 결과로 탄소 섬유 강화 플라스틱과 알루미늄 폼으로 조립한 복합재료의 구조적 안전성을 예측과 구조적 안전성이 높이는 사료가 된다.
        114.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Matrimid-5218로부터 메틸이미드 중공사 전구체를 비용매 유도 상분리법으로 제조한 후에 탄화시 켜 탄소 분자체 중공사 분리막을 제조하였으며 전처리, 열분해, 후처리 공정이 탄소 분자체 중공사 분리막의 기체 투과 특성 에 미치는 영향을 살펴보았다. 250°C에서 2시간 공기 중에서 전처리하고, 550°C에서 2시간 질소 분위기에서 열분해한 후, 250°C에서 2시간 공기 중에서 후처리할 때에 가장 높은 기체 투과특성을 갖는 분리막이 제조되었다. 제조된 탄소 분리막은 H2, He, CO2 투과도가 69.72, 35.61, 31.01 GPU이었으며 O2, N2 가스는 거의 투과하지 않았다. 따라서 제조된 탄소분자체 중 공사 분리막은 H2, He 등 작은 분자 기체와 CO2 회수용 분리막으로서 우수한 소재임을 확인할 수 있었다.
        4,200원
        115.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        황화수소 등 유황계 악취물질은 매우 낮은 최소감지농도를 갖고 있기 때문에 악취를 제거하기 위해서는 출구에서 악취가 검출되지 않는 적정 부하량에 대해 검토가 이루어져야 한다. 본 연구에서는 활성탄을 가공하여 제작한 습윤 상태의 활성탄소섬유를 이용하여 현장조건과 유사하게 황화합물악취 H2S 10 ppm, MT 3 ppm, DMS 1.5 ppm 3성분의 혼합가스에 대해 약 130일 동안 제거실험을 수행하였다. 그 결과, H2S는 유입부하량을 0.78 g-H2S / kg ACF·d 이하로 설정하여 운전하는 것이 필요하며, MT는 불완전산화 부산물인 DMDS가 출구에서 검출되어 악취를 유발하므로 안정적인 운전을 위해서는 유입부하량을 0.27 g-MT / kg ACF·d 이하로 설정하여 운전하는 것이 필요한 것으로 나타났다. DMS는 유입부하량의 변화에 관계없이 거의 제거되지 않는 것으로 나타났다.
        4,000원
        116.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.
        4,000원
        117.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and 2000℃ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and 2000℃, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached 3.9×10⁴S/m with the carbonization temperature increasing to 2000℃ using a four-point method.
        4,000원
        118.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.
        4,500원
        119.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.
        4,000원
        120.
        2013.04 구독 인증기관 무료, 개인회원 유료
        In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). The number of layers of strengthening CFRP sheet, with a value of 0 to 3 was the test variables. From the experimental results, flextural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet is appropriated considering efficiency and workability.
        3,000원