This study delves into the potential application of whisker carbon nanotube (w-CNT) in terms of electrical heating performance, with a particular emphasis on its significance in high-efficiency electrothermal conversion applications. Meanwhile, a comparative study was conducted on traditional carbon nanotubes (T1 and T3) with different aspect ratios. A uniform and dense carbon nanotube paper (BP) was prepared using a vacuum filtration method, including single-layer (T1, T3 and w-CNT BP), double-layer gradient composite (T1/T3-g, w-CNT/T3-g), and mixed composite (T1/T3-m and w-CNT/T3-m). The thickness of each type of BP is approximately 100 μm. The results demonstrated that electrical conductivity and electrical heating performance of single-layer BPs follow the order of T1 > T3 > w-CNT. While, mixed composite BPs are superior to double-layer gradient composite BPs in electrical conductivity and thermal performance. Notably, w-CNT/T3-m BP exhibits excellent electrothermal performance. Under an applied voltage of 5 V, the surface temperature of w-CNT/T3-m BP reaches 190 ℃. When the voltage is increased to 6 V, the surface temperature rises by 150℃ within 10 s, reaching a steady-state temperature of 318 ℃. This excellent electrothermal performance can be attributed to the introduction of w-CNT, which has a perfect and defect free structure according to Raman analysis. In-depth analysis using X-ray diffraction (XRD) indicated a more complete and higher degree of crystallinity in the w-CNT structure. In summary, this study not only provides experimental and theoretical basis for the application of high-performance electrothermal materials based on carbon nanotubes, but also foreshadows their broad application prospects in the field of macroscopic materials.
This paper presents an electrochemical immunosensor using a graphene/multi-walled carbon nanotube (MWCNT) composite platform for detecting the cardiovascular marker C-reactive protein (CRP). The immunosensor exhibited a linear detection range of 0.20–100 ng/mL CRP with a low limit of detection reaching 0.081 ng/mL. The composite material provided a 3D porous structure that allowed efficient antibody immobilization and minimized steric hindrance. The sensor showed high specificity, with minimal response to interfering substances. Using differential pulse voltammetry, the immunosensor demonstrated exceptional precision, rapid detection, and a direct correlation between CRP concentration and sensor response current. Overall, this work highlights the potential of the graphene/MWCNT composite platform as a robust tool for early CRP detection and cardiovascular disease risk assessment. The immunosensor provides sensitive and selective CRP quantification that could enable timely clinical intervention for at-risk individuals.
In order to prevent early distress in asphalt pavement and save on subsequent operational and maintenance costs, modifying asphalt is an effective approach. Styrene–butadiene–styrene (SBS) block copolymers, due to their excellent physicochemical properties, have become a mature and widely used asphalt modifier. Carbon nanotubes (CNTs) possess advantages such as a large specific surface area and high modulus, which, when incorporated into asphalt, can enhance its deformation resistance. To analyze the effect of incorporating CNTs on SBS-modified asphalt (SBS-A), this study analyzed the influence of different CNT concentrations on the high and low-temperature performance and aging properties of SBS-A through penetration, softening point, ductility, dynamic shear rheometry, and short-term aging tests. The optimal CNT concentration was determined to be 1.0%. Furthermore, the changes in the modified asphalt during the aging process were analyzed using infrared spectroscopy.
In this research, carbon nanotubes(CNT) and graphene nanoplates(GnP) are deposited on the surface of carbon fibers(CF) at once. Investigating the effect between CNT and GnP on increasing the interfacial and mechanical properties of carbon fiber reinforced epoxy composites(CFRP). The cross section of the CFRP composites indicates that the GnPs/CNTs hybrid coating exhibits significantly higher mechanical performance in all coating samples. The interlayer shear strength of the GnPs/CNT hybrid coated CFRP composite was 90% higher than that of the uncoated CF composite. The flexural and tensile strength of CFRP composites using GnPs /CNT hybrid coatings were improved by 52% and 70%, respectively, compared to uncoated CF.
현대에 사용되는 콘크리트는 혼화재료 적용을 통하여 워커빌리티와 구조적 성능을 향상시킬 수 있고 극한 환경에서 적용 가능한 기능성 콘크리트로 개발되었으나 외부 요인에 의한 부식, 인장력에 취약한 구조적 한계는 콘크리트의 활용 범위를 제한하였다. 이러한 콘크리트의 단점을 해결하는 방안으로 신소재로써 각광받고 있으며 고유의 기능을 부여할 수 있는 Smart material을 활용하고자 하며 Smart material 중 하나인 탄소나노튜브는 콘크리트의 보강재 중 하나인 철근보다 더 뛰어난 역학적 성능을 보이므로 콘크리트 내 적용을 통해 콘크리트의 향상된 구조성능을 기대할 수 있다. 또 다른 Smart material중 하나인 자기치유 혼화재는 콘크리트 균열면의 앙금 반응을 통해 균열을 메움으로써 콘크리트의 균열 부분 및 내부 배근재의 부식을 최소화하고자 한다. 탄소나노튜브는 시멘트 질량의 0.1, 0.3, 0.5%, 자기치유 콘크리트는 시멘트 질량의 6, 8, 10%만큼 혼입된 콘크리트 복합체의 역학적 거동을 검토하기 위해서 압축강도 시험과 휨시험을 수행하였으며 휨시험이 종료된 시편을 수중에 넣어 0,3,7,14,21,28,56,84일간 자기치유 성능을 검토하였다. 휨시험의 경우 OPC시편과 비교하여 동일 변위에 대해 높은 하중 변화를 보였으나 취성도가 증가하였다. 자기치유 실험의 경우 탄소나노튜브의 경우 일반 OPC 시편보다 약간 향상된 자기치유 성능을 보였으나 혼입량 증가에 따른 경향성을 보이지 못하였다. 자기치유 혼화재의 경우 OPC 또는 탄소나노튜브 혼입 콘크리트보다 초기 속도면에서 느린 회복률을 보였으나 최종 회복률에서 더 우수한 결과를 보였으며 이러한 현상은 혼입율의 증가에 따라 해당 경향이 더 뚜렷히 보였다.
본 연구에서는 탄소나노튜브/화이버/폴리머 복합소재 구조에 대한 재료 물성 및 강성 추정을 다룬다. 수정된 Halpin-Tsai 모델을 적용한 멀티 스케일 해석은 탄소나노튜브의 함유량 비율, CNT 두께-길이 비율, 화이버 부피 함유량, 그리고 화이버 보강각도 변화에 따라서 수행되었다. 본 연구에서 제시한 멀티-스케일 접근방법은 기존 모델을 적용하여 얻은 결과와 비교하여 검증하였다. 매개변수 해석을 통하여 CNT의 적절한 함유량은 적층된 CNTFPC 구조의 구조성능의 향상시킬 수 있는 중요한 특성을 규명하였다.
Nickel oxide(NiO) thin films, nanorods, and carbon nanotube(CNT)/NiO core-shell nanorod structures are fabricated by sputtering Nickel at different deposition time on alumina substrates or single wall carbon nanotube templates followed by oxidation treatments at different temperatures, 400 and 700 oC. Structural analyses are carried out by scanning electron microscopy and x-ray diffraction. NiO thinfilm, nanorod and CNT/NiO core-shell nanorod structurals of the gas sensor structures are tested for detection of H2S gas. The NiO structures exhibit the highest response at 200 oC and high selectivity to H2S among other gases of NO, NH3, H2, CO, etc. The nanorod structures have a higher sensing performance than the thin films and carbon nanotube/NiO core-shell structures. The gold catalyst deposited on NiO nanorods further improve the sensing performance, particularly the recovery kinetics.
본 연구에서는 해수를 유도용액으로 사용하고 하수처리수를 공급수로 사용하는 정삼투막 공정의 유기/바이오 오염물에 의한 막오염을 저감하기 위해 폴리도파민/탄소 나노 튜브 복합 분리막을 제작하였다. 분리막은 기존 계면중합반응에 탄소 나노 튜브를 첨가하여 초박형 복합 분리막을 제조한 후, 폴리도파민으로 코팅시켜 제조하였다. 제작 된 분리막은 알긴산나트륨(Sodium alginate)용액과 미생물(Pseudomonas aeruginosa PA01) 부착 실험을 통하여 수투과도와 막오염도를 평가하였다. 그 결과, 폴리도파민/탄소 나노 튜브 복합 분리막은 복합되지 않은 분리막에 비하여 높은 수투과도와 낮은 막오염 성능을 보였다.
Heavy metals are typical contaminant in water and need to be removed because they are non-biodegradable and can accumulate in human body. To remove metal and other contaminants from water, chemical absorbents are widely used due to their low cost. Herein, hybrid materials comprised of amylose and single wall carbon-nanotube (swCNT) was developed as the absorbent for water purification. A high adsorption properties of carbon-nanotubes have been utilized in designing effective absorbent but its poor dispersity in water is a limiting factor for practical use. Single wall carbon-nanotube was hybridized with amylose chain produced by enzyme reaction of amylosucrase and their tendency to self-assemble in aqueous environment. The amylose-swCNT microparticles were characterized by FE-SEM and turned out to be spherical structure with CNTs embedded throughout the amylose matrix. The ability of amylose-CNT microparticles to remove copper was examined. Concentration of copper was decreased after reaction with amylose-swCNT microparticles. Although amount of decreasing copper was less than swCNT on same total mass, Adsorption efficiency of amylose-swCNT microparticles was good because their swCNT content was only 10% of total mass.
Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with 500 oC/2 h oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.
Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.
A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforcedaluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as asheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled inthe tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhib-ited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; itdecreased from 24 µm to 0.9 µm by the addition of only 1 volCNT. The average hardness of the composites increasedby approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concludedthat the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.
Carbon nanotube-dispersed bismuth telluride matrix (CNT/Bi2Te3) nanopowders were synthesized by chem- ical routes followed by a ball-milling process. The microstructures of the synthesized CNT/Bi2Te3 nanopowders showed the characteristic microstructure of CNTs dispersed among disc-shaped Bi2Te3 nanopowders with as an average size of 500 nm in-plane and a few tens of nm in thickness. The prepared nanopowders were sintered into composites with a homogeneous dispersion of CNTs in a Bi2Te3 matrix. The dimensionless figure-of-merit of the composite showed an enhanced value compared to that of pure Bi2Te3 at the room temperature due to the reduced thermal conductivity and increased electrical conductivity with the addition of CNTs.
A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of 2.1Ω. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S m-1, where the weight fraction of the CNT mat was 36.5%.
Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles (Fe3O4) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying Fe3O4 content. It was determined that a 1:1 ratio of CNT to Fe3O4 provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high Fe3O4 loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.
Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.
The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.