Industrial activities that utilize nuclear technology can cause radioactive contamination in the ecosystems. In particular, cesium (Cs) has problems, such as neurological diseases, when it is exposed and accumulated in the bodies of animals, plants, and humans for a long time. Therefore, the development of simple and economical adsorbents for Cs removal is required. In this study, the surface of petroleum residue pitch was modified using NaClO and it was used to remove Cs from an aqueous solution. Batch experiments and characterization of the modified adsorbent were performed to determine the adsorption mechanism between the adsorbent and Cs. From these results, chemical and monolayer adsorption were found to occur at the carboxyl groups on the adsorbent surface, along with a cation exchange reaction occurred due to the sodium ions on the surface. Through this modification process, the total acidity, including phenolic, lactonic and carboxylic functional groups, was improved to 1.563 mmol/g and the maximum adsorption capacity of Cs for the modified adsorbent was 65.8 mg/g.
The nuclear fuel that melted during the Fukushima nuclear accident in 2011 is still being cooled by water. In this process, contaminated water containing radioactive substances such as cesium and strontium is generated. The total amount of radioactive pollutants released by the natural environment due to the nuclear accident in Fukushima in 2011 is estimated to be 900 PBq, of which 10 to 37 PBq for cesium. Radioactive cesium (137Cs) is a potassium analog that exists in the water in the form of cations with similar daytime behavior and a small hydration radius and is recognized as a radioactive nuclide that has the greatest impact on the environment due to its long half-life (about 30 years), high solubility and diffusion coefficient, and gamma-ray emission. In this study, alginate beads were designed using Prussian blue, known as a material that selectively adsorbs cesium for removal and detection of cesium. To confirm the adsorption performance of the produced Prussian blue, immersion experiments were conducted using Cs standard solution, and MCNP simulations were performed by modeling 1L reservoir to conduct experiments using radioactive Cs in the future. An adsorption experiment was conducted with water containing standard cesium solution using alginate beads impregnated with Prussian blue. The adsorption experiment tested how much cesium of the same concentration was adsorbed over time. As a result, it was found that Prussian blue beads removed about 80% of cesium within 10-15 minutes. In addition, MCNP simulation was performed using a 1 L reservoir and a 3inch NaI detector to optimize the amount of Prussian blue. The results of comparing the efficiency according to the Prussian volume was shown. It showed that our designed system holds great promise for the cleanup and detection of radioactive cesium contaminated seawater around nuclear plants and/or after nuclear accidents. Thus, this work is expected to provide insights into the fundamental MCNP simulation based optimization of Prussian blue for cesium removal and this work based MCNP simulation will pave the way for various practical applications.
The radioactive cesium, released from the normal operation or the accidental operation of nuclear facilities, should be regularly monitored for environmental regulatory compliance. The 135Cs/137Cs isotopic ratios, potentially useful for long-term tracking Cs transport in seawater, can be used as a tool of understanding how radionuclides are transported from different nuclear production source terms and distributed in the ocean. The ultra-high sensitive mass spectrometers (TIMS, SF-ICP-MS and TQ-ICP-MS) have been used to measure the 135Cs/137Cs isotopic ratios. However, the radiochemical separation of Cs from the seawater matrix is essential for the analysis of Cs using the mass spectrometers. An automated radiochemical procedure for the separation of Cs in seawater was developed for the analysis of 135Cs/137Cs isotopic ratios using a sequential column chromatography with AMPPAN and AG50Wx8 cation exchange resins. National Instrument’s LabVIEW is a graphical programming language and a powerful tool for the instrument control. A virtual instrument system for the automated separation of cesium isotopes was developed by the state machine of the fundamental design patterns in LabVIEW. In this study, the conceptual designs of an automated separation system of cesium isotopes, its virtual instrument system based on the LabVIEW state machine architectures and an automated radiochemical procedure were described for the purification of cesium isotopes at trace levels found in seawater discharged from the various nuclear facilities.
Wide-area surface decontamination is essential during the sudden release of radioisotopes to the public, such as nuclear accidents or terrorist attacks. A spray coating composed of a reversible complex between poly (vinyl alcohol) (PVA) and phenylboronic acid-grafted poly (methyl vinyl ether-alt-mono-sodium maleate) (PBA–g–PMVE–SM) was developed to remove radioactive cesium from surfaces. The simultaneous spay of PVA and PBA–g–PMVE–SM aqueous polymer solutions containing Cs adsorbent to contaminated surfaces resulted in the spontaneous formation of a PBA–diol ester bond-based gel-like coating. The Cs adsorbent suspended in the gel-like coating selectively removed Cs-137 from the Cs-contaminated surface. The used gel-like coating were removed from surfaces by simple water rinsing. This recovery way has advantages compared with costly incineration to remove the organic materials for final disposal/storage of the radioactive waste. Thus, our spray coating is suitable for practical wide-area surface decontamination. In radioactive tests, the hydrogel containing Cs-adsorbent showed substantial Cs-137 removal efficiencies of 96.996% for painted cement and 63.404% for cement, which are 2.33 times better than the values for the commercial surface decontamination coating agent DeconGel.
Low- and intermediate level waste (LILW) repository in Gyeongju, Korea is in operation and the radioactive waste should satisfy the waste acceptance criteria (WAC) of the repository. Among the WAC of the Gyeongju LILW repository, the leachability index criterion is considered to be the criterion that is directly related to the isolation of the radionuclides from biosphere. Cesium, strontium, and cobalt should satisfy the leachability index larger than six by following the ANS 16.1 leaching test method. Several research were performed for the leachability index of Cs, Sr, and Co by following the ANS 16.1 leaching test method. However, the test condition of the previous research is expected to be different to the condition of the actual waste. Due to the radioactivity of the radionuclide such as Cs, Sr and Co, most of the research applied the surrogate of those radionuclides. The concentration of those nuclides was generally measured by the inductively coupled plasma (ICP) equipment, however, high concentration compared to the disposal limit of those nuclides due to the detection limit of the ICP was applied. From the Freundlich and Langmuir adsorption isotherms, the adsorption of the nuclides differs according to the concentration of the nuclides. As the leachability index of the nuclides is affected by the adsorption of the nuclides on the binding material, the effect of nuclide concentration is expected to be not ignorable. Therefore, the leachability index difference according to the nuclide concentration should be compared to avoid over- or underestimation of the leachability index. In this study, the difference in the leachability index according to the concentration of nuclides is aimed to be checked. Cs, Sr, and Co, which should satisfy the leachability index criterion in the WAC of the Gyeongju repository, were selected as target nuclides. Three concentrations were selected to compare the leachability index: 0.1 mol, 0.001 mol and below the regulatory exemption concentration. The concentration of non-radioactive nuclides in the leachant was measured by ICPOES and ICP-MS while the concentration of radionuclides was measured by HPGe. The result of this study can be applied as background data enhancing the WAC or disposal concentration limit of the radionuclides in Gyeongju LILW repository.
The sustainability of the nuclear power industry hinges increasingly on the safe, long-term disposal of radioactive waste. Despite significant innovations and advancements in nuclear fuel and reactor design, the quest for a permanent solution to handle accumulating radioactive waste has received comparatively less attention. Conventionally, two widely recognized solidification methods, namely cementation for low and intermediate-level waste and vitrification for high-level waste, have been favored due to their simplicity, affordability, and availability. Recently, geopolymers have emerged as an appealing alternative, gaining attention for their minimal carbon footprint, robust chemical and mechanical properties, cost-effectiveness, and capacity to immobilize a broad spectrum of radionuclides, including radioactive organic compounds. This study delves into the synthesis of metakaolin-based geopolymers tailored for the immobilization of fission products like cesium (Cs) and molybdenum (Mo). The investigation unfolded in two key steps. In the initial step, we optimized the alkali content to prevent the occurrence of efflorescence, a potential issue. Remarkably, as the Na2O/Al2O3 ratio increased from 0.82 to 1.54, we observed significant enhancements in both compressive strength (11.45 to 27.07 MPa) and density (up to 2.23 g/cm3). This suggests the importance of careful adjustment in achieving the desired geopolymer characteristics. The second phase involved the incorporation of 2wt% of Cs and Mo, both individually and as a mixture, into the geopolymer matrix. We prepared the GP paste, which was poured into cylindrical molds and cured at 60°C for one week. To scrutinize the crystallinity, phase purity, and bonding type of the developed matrix, we employed XRD and FTIR techniques. Additionally, we conducted standard compressive strength tests (following ASTM C39/C39M-17b) to assess the stacking durability and robustness of the developed waste form, vital for storage, handling, transportation, and disposal in a deep geological repository. Furthermore, to evaluate the chemical durability, diffusivity and leaching of the GP waste matrix, we employed the ASTM standard Product Consistency Test (PCT: C 1285-02) and American nuclear society’s devised leaching test (ANS 16.1). It is noteworthy that the introduction of Cs and Cs/Mo in the GP matrix led to a reduction of more than 50% and 60% in compressive strength, respectively. This outcome may be attributed to the interference of Cs and Mo with the geopolymerization process, potentially causing the formation of new phases. However, it is crucial to emphasize that both developed matrices exhibited an acceptable normalized leaching rate of less than 10-5 g·m-2·d-1. This finding underscores the promising potential of the GP matrix for the immobilization of cationic and anionic radioactive species, paving the way for more sustainable nuclear waste management practices.
The mobility of radionuclides is largely determined by their radiological properties, geochemical conditions, and adsorption reactions, such as surface adsorption, chemical precipitation, and ion exchange. To evaluate the safety assessments of radionuclides in nuclear sites, it is essential to understand the behavior and mechanism of radionuclides onto soils. Since nuclear power plants are located in coastal areas, the chemical composition of groundwater can vary depending on the intrusion of seawater, altering the adsorption distribution coefficient (Kd) values of radionuclides. This study examines the impact of seawater on the Kd values of clay minerals for cesium (Cs) and strontium (Sr). The results of Cs+ adsorption experiments showed a broad range of Kd values from 36 to 1,820 mL/g at an initial concentration of 1 mg/L and a high sorption coefficient of 15-613 mL/g at an initial concentration of 10 mg/L. Montmorillonite, hydrobiotite, illite, and kaolinite were ranked in terms of their CEC values for Cs+ adsorption, with hydrobiotite having the highest adsorption at 1 mg/L. The results of Sr adsorption experiments showed a wide range of Kd values from 82 to 1,209 mL/g at an initial concentration of 1 mg/L and a lower adsorption coefficient of 6.68-344 mL/g at an initial concentration of 10 mg/L. Both Cs+ and Sr2+ demonstrated lower Kd values at higher initial concentrations. CEC of clays found to have a significant impact on Sr2+ Kd values. Ca2+ ions showed a significant impact on Sr2+ adsorption distribution coefficients, demonstrating the greater impact of seawater on Sr2+ compared to Cs+. These findings can inform future safety assessments of radionuclides in nuclear sites.
Radioactive contaminants, such as 137Cs, are a significant concern for long-term storage of nuclear waste. Migration and retention of these contaminants in various environmental media can pose a risk to the surrounding environment. The distribution coefficient (Kd) is a critical parameter for assessing the behavior of these contaminants and can introduce significant errors in predicting migration and remediation options. Accurate prediction of Kd values is essential to assess the behavior of radioactive contaminants and to ensure environmental safety. In this study, we present machine learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict Kd values for Cs in soils. We used three different machine learning models, namely the random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN), to predict Kd values. The models were trained on 14 input variables from the JAEA-SDB, including factors such as Cs concentration, solid phase properties, and solution conditions which are preprocessed by normalization and log transformation. We evaluated the performance of our models using the coefficient of determination (R2) value. The RF, ANN, and CNN models achieved R2 values of over 0.97, 0.86, and 0.88, respectively. Additionally, we analyzed the variable importance of RF using out-of-bag (OOB) and CNN with an attention module. Our results showed that the initial radionuclide concentration and properties of solid phase were important variables for Kd prediction. Our machine learning models provide accurate predictions of Kd values for different soil conditions. The Kd values predicted by our models can be used to assess the behavior of radioactive contaminants in various environmental media. This can help in predicting the potential migration and retention of contaminants in soils and the selection of appropriate site remediation options. Our study provides a reliable and efficient method for predicting Kd values that can be used in environmental risk assessment and waste management.
Bentonite is a potential buffer material of multi-barrier systems in high-level radioactive wastes repository. Montmorillonite, the main constituent of the bentonite, is 2:1 type aluminosilicate clay mineral with high swelling capacity and low permeability. Montmorillonite alteration under alkaline and saline conditions may affect the physico-chemical properties of the bentonite buffer. In this study, montmorillonite alteration by interaction with synthetic alkaline and saline solution and its retention capacity for cesium and iodide were investigated. The experiments were performed in three different batches (Milli-Q water, alkaline water, and saline water) doped with cesium and iodide for 7 days. Alteration characteristics and nuclide retention capacity of original- and reacted bentonite was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), Nuclear Magnetic Resonance (NMR) and Cation Exchange Capacity (CEC) analysis. From the results, cesium retention occurred differently depending on the presence of competing ions such as K, Na, and Mg ions in synthetic solutions, while iodide was negligibly removed by bentonite. Montmorillonite alteration mainly occurred as cation exchange and zeolite minerals such as merlinoite and mordenite were new-formed during alkaline alteration of the montmorillonite. CEC value of reacted bentonite increased by formation of the zeolite minerals under alkaline conditions.
In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 μg was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir’s adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.
The magnetic Cs adsorbent functionalized with hierarchical titanium-ferrocyanide were fabricated for the highly efficient magnetic removal of radioactive cesium from water. The new magnetic Cs adsorbent has a core–shell structure that comprises a Fe3O4 core, an interlayer of SiO2, and a titanium-ferrocyanide-shell with hierarchical nanostructure. At first, the magnetic Fe3O4 nanoparticles synthesized via a hydrothermal reaction were coated with SiO2. Then, TiO2 were coated on the surface of SiO2 coated magnetic nanoparticles. Finally, the hierarchical titanium-ferrocyanide composed of 2-dimensional TiFC flakes was fabricated on the surface of core-shell MNP@SiO2@TiO2 microparticles using a TiO2 sacrificial template via a simple reaction with potassium ferrocyanide (FC) based on the Kirkendall-type diffusion. The resulting magnetic Cs adsorbent shows higher adsorption capacity of 416 mg/g than other magnetic Cs adsorbents (below 200 mg/g) because of the increased effective surface area of hierarchical titanium-ferrocyanide. Therefore, our Magnetic Cs adsorbent functionalized with hierarchical titanium-ferrocyanide has excellent potential for the treatment of various 137Cs-contaminated sources.
Radionuclides stored in a radioactive waste repository over a long period of time might be leached through the barriers such as engineered rock (cement) and natural rock (granite). Organic complexing agents such as ethylenediaminetetraacetic acid (EDTA) and isosaccharinic acid (ISA) may also influence the mobility of radionuclides. In this study, a continuous fixed-column reactor packed with engineered and natural rocks was designed to investigate the effect of organic complexing agents on cesium mobility through cement and granite under anaerobic conditions. The influent flow rate of the mixed solution (organic complexing agent and cesium) at the column bottom was 0.1 mL/min, while that of groundwater was 0.2 mL/min, which was introduced between cement and granite layers in the middle of the column. The hydraulic properties such as diffusion coefficient and retardation factor were derived by a bromide tracer test. The effects of different operating parameters, such as initial cesium concentrations, initial EDTA or ISA concentrations, and bed size, on the cesium adsorption were investigated. The Thomas, Adams-Bohart, and Yoon-Nelson models were applied to the experimental data to predict the breakthrough curves using non-linear regression. These results suggest that organic complexing agents such as EDTA and ISA significantly influence the mobility of cesium in the barriers, indicating that the presence of complexing agents enhances the migration of cesium to the geosphere.
Radioactive cesium is a heat generated and semi-volitile nuclide in spent nuclear fuel (SNF). It is released gasous phase by head-end treatment which is a pretreatment of pyroprocessing. One of the capturing methods of gasous radioactive cesium is using zeolite. After ion-exchanged zeolite, it is transformed to ceramic waste form which is durable ceramic structure by heat treatment. Various ceramic wasteforms for Cs immobilization have been researched such as cesium aluminosilicate (CsAlSi2O6), cesium zirconium phosphate (CsZr2(PO4)3), cesium titanate (CsxAlxTi8-xO16, Cs2TiNb6O18) and CsZr0.5W1.5O6. The cesium pollucite is composed to aluminosilicate framework and cesium ion incorporated in matrix materials lattices. Many researchers are reported that the pollucite have high chemical durability. In this study, the Cesium pollucite was fabricated using mixtures of aluminosilicate denoted Absorbent product (AP) and Cs2CO3 by calcination and pelletized by cold pressing. The characterization of fabricated pollucite powder and pellets was analyzed by XRD, TGA, SEM, SEMEDS and XRF. The chemical durability of pollucite powder was evaulated by PCT-A and ICP-MS and OES. Thus, the optimal pressure condition without breaking the pellets which is low Cs2O/AP ratio and pelletizing pressure was selected. The long-term leaching test was performed using MCC-1 method for 28 days with the fabricated pollucite pellets. The leachate of leaching test was allard groundwaster and Deionized water and replaced 5 contact periods which is 3 hours, 3 days, 7 days, 14 days and 28 days and analyzed by ICPMS. The leaching rate was shown two stages. The first stage was rapid and relatively large amount of nuclides were leached. The leaching rate was decreased in the second stage. The fractional release rate of this study was shown same trend. These results were similar to previous studies.
Bentonite, which mostly consists of montmorillonite, is considered as a suitable buffer material for disposal of high-level radioactive wastes in deep geological repository due to its high swelling capacity, low permeability, and strong retention capacity of radionuclide migration. Alkaline and saline solutions originated from degradation of cementitious material and seawater intrusion, respectively, may cause the changes in mineralogical and chemical properties of montmorillonite with various processes such as cation exchange within the interlayer, dissolution of montmorillonite, and precipitation of second minerals. In this study, montmorillonite alteration under alkaline and saline environments and its influences on retention of cesium and iodide by bentonite buffer were investigated. The reactions of bentonite (Bentonil-WRK) with alkaline solutions (0.1 M KOH and NaOH) and simulated saline solution were performed for 7 days in batch experiments at 25°C. After the experiments, reacted bentonite samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Short Wavelength Infrared (SWIR) spectrometry. The concentrations of cesium and iodide dissolved in the solutions were analyzed using an inductively coupled plasma mass spectrometer (ICP–MS). The XRD patterns showed significant decrease in the interlayer space of montmorillonite after the reaction with alkaline solution due to cation exchange and change in hydration status at the interlayer. The retention of cesium and iodide in alkaline and saline solutions were affected by montmorillonite alteration and ion competition. Therefore, the montmorillonite alteration affecting the nuclide retention capacity and long-term stability of bentonite buffer should be considered in the safety assessment of long-term geological disposal performance.
Disposal methods of radioactive waste can be mainly divided into near-surface disposal and deep geological disposal. If the radioactive waste is exposed to groundwater for a long time in the disposal environment, no matter how the decommissioning waste generated from the nuclear power plant is disposed of, the radionuclides may be released from the disposal site. Decommissioning waste from nuclear power plant contains radionuclides that are harmful to ecosystem including humans. Radionuclides released from disposal site behave in a complex and sensitive manner affected by geochemical conditions such as soil, geological media and groundwater. Sorption is one of the important mechanisms to retard the migration of radionuclides in a subsurface environment. In this study, geochemical properties of groundwater were collected and analyzed in the disposal environment considering disposal method in order to evaluate the geochemical behavior of radionuclides. The formation of aqueous and precipitated species of cesium and cobalt in a disposal condition were calculated and estimated. The sorption properties were also evaluated and predicted by considering the changes in the geochemical conditions such as pH, redox potential and geological media for the safety assessment.
Forest fires produce various particulate organic matters (POMs) derived from the incomplete combution process of biomass. The POMs deposited in soil and sediments can affect the physicochemical properties of the subsurface environments. This study investigated the sorption and transport behavior of cesium (Cs) in soil-groundwater environment after wildfire. Soil samples were collected at two locations (GS1 & GS2) in Gangwon Province, Korea, at different depths (~5, ~20, and ~40 cm). The sampling site, where a large-scale forest fire occurred in 2017, was damaged almost 252 ha of forest. The soil characteristics were determined by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), total organic carbon (TOC) analysis and organic petrography, and batch and fixed-bed column experiments were performed to evaluate the Cs uptake and retardation. The XRD patterns of the soils indicated that the mineral compositions of soils were quartz, feldspars (e.g., orthoclase & albite) with minor muscovite/illite. Quartz and feldspars were abundant in all studied soils, and GS2 sample contained higher feldspars and phyllosilicate minerals than the GS1. The TOC contents were high (7–8wt%) in the topsoils, decreasing with depth. The SEM and organic petrographic analyses showed that various organic carbon particles such as textinite, ulminite, fusinite (charcoal) and char existed. Presence of charcoal and char is the evidence of wildfires, even though their amount was few. Batch sorption experiments revealed that the Kd value decreased non-linearly as the Cs concentrations increased, and the sorption isotherms were fitted well with the Freundlich model. The Kd values of each soil were much greater in topsoils compared to subsoils at all experimental Cs concentrations. In particular, the GS1 topsoil had higher sorption capacity for cesium than GS2 subsoils, although it had low phyllosilicate mineral contents with realtively rich organic matter. The breakthrough curve of column experiments with high concentration (C0 ≈ 1×105 μg·L−1) also exhibited remarkable Cs retardation phenomena in topsoils. Their retardation factors (Rf,Cs) were max. 4 times greater than those of subsoils, showing Rf,Cs ≈ 43 to 45 for topsoils. At low concentration (C0 ≈ 1×104 μg·L−1), the Rf,Cs of topsoils (≈ 284 to 374) was slightly greater than that of subsoils (≈ 270 to 271). These results imply that POMs caused by wildfires can play important role on the Cs sorption and transport in the subsurface environments.