This study aimed to develop an efficient recycling process for wastewater generated from soil-washing used to remediate uranium (U(VI))-contaminated soil. Under acidic conditions, U(VI) ions leached from the soil were precipitated and separated through neutralization using hydrazine (N2H4). N2H4, employed as a pH adjuster, was decomposed into nitrogen gas (N2), water (H2O), and hydrogen ions (H+) by hydrogen peroxide (H2O2). The residual N2H4 was precipitated when the pH was adjusted using sulfuric acid (H2SO4) to recycle the wastewater in the soil-washing process. This purified wastewater was reused in the soil-washing process for a total of ten cycles. The results confirmed that the soil-washing performance for U(VI)-contaminated soil was maintained when using recycled wastewater. All in all, this study proposes an efficient recycling process for wastewater generated during the remediation of U(VI)-contaminated soil.
When decommissioning a nuclear power plant, it is expected that clearance or radioactive waste (e.g., soil, concrete, metal, etc.) below the low-level will be generated in a short period on a large scale. Among the various types of waste, most of the contaminated soil is known to be classified as clearance or the (very) low-level radioactive waste. Accordingly, an accurate measurement and classification of contaminated soil in real-time during the decommissioning process can efficiently reduce the amount of soil waste and the possibility of contamination diffusion. However, in order to apply a system that measures and classifies contaminated soil in real-time according to the level of contamination to the decommissioning site, a demonstration is required to evaluate whether the system is applicable to the site. In this study, to establish requirements for determining the applicability of the system to the decommissioning site, preceding cases from countries with abundant decommissioning experience were investigated. For example, MACTEC of the U.S. demonstrated the developed system at the Saxton nuclear power plant in the U.S. and confirmed that the amount of soil that can be analyzed per hour in the system is affected by radionuclides, minimum detectable activity (MDA), and applicable volume. In the future, therefore, we will utilize the result of this study to develop the requirements of demonstrating the system for measurement and classification of contaminated soil in real-time.
For the release of the nuclear power plant site after the decommissioning, a reliable exposure dose assessment considering the environmental impact of residual radionuclides is essentially required. In this study, the Derived Concentration Guideline Level (DCGL) for the hypothetically contaminated surface soil at the Wolsong nuclear power plant (NPP) unit 1 site was preliminarily calculated by using the RESRAD-OFFSITE computational code and compared with the other case studies. Moreover, radiation exposure dose for local residents and relevant exposure pathways were quantitatively analyzed based on the calculation model established through this work. For the target site modeling, the source term was determined by referring to the previous case studies regarding the nuclear power plant decommissioning, quantification analysis data of pressure tubes of Wolsong NPP unit 1, and radionuclide data estimated by using the MCNP/ORIGEN-2 code. In total, 14 different radioisotopes such as Ag-108m, C-14, Co-60, Cs-134/137, Fe-55, H-3, Nb-93m/94, Ni-63, Sb-125, Sn-121m, Sr-90, and Zr-93 were considered as target radionuclides. In addition, the geological structure model of the Wolsong NPP site was established based on the final safety analysis report of Wolsong NPP unit 1. The distribution coefficients (Kd) were taken from the JAEA-SDB to estimate the migration/retardation behavior of various radionuclides under the groundwater condition of the Wolsong NPP site. In the present work, the DCGL values were calculated according to the site release criterion of 0.1 mSv/yr, which indicates the radiation protection standard for the site release. Moreover, the exposure pathway and sensitivity analyses were conducted to assess the sensitive input parameters remarkably influencing the calculation result. For the evaluation of exposure dose for local residents, a site layout centered around Wolsong NPP unit 4, located in the closest proximity to the residents’ habitation area, was alternatively established and all potential exposure pathways were considered as a comprehensive resident farmer scenario. The results obtained from this study are expected to serve as a preliminary case study for the DCGL values regarding the surface soil at the Wolsong NPP unit 1 site and for evaluating the radiation exposure dose to local residents resulting from the residual radioactivity at the site after the decommissioning.
Economical radioactive soil treatment technology is essential to safely and efficiently treat of high-concentration radioactive areas and contaminated sites during operation of nuclear power plants at home and abroad. This study is to determine the performance of BERAD (Beautiful Environmental construction’s RAdioactive soil Decontamination system) before applying magnetic nanoparticles and adsorbents developed by the KAERI (Korea Atomic Energy Research Institute) which will be used in the national funded project to a large-capacity radioactive soil decontamination system. BERAD uses Soil Washing Process by US EPA (402-R-007-004 (2007)) and can decontaminate 0.5 tons of radioactive soil per hour through water washing and/or chemical washing with particle size separation. When contaminated soil is input to BERAD, the soil is selected and washed, and after going through a rinse stage and particle size separation stage, it discharges decontaminated soil separated by sludge of less than 0.075 mm. In this experiment, the concentrations of four general isotopes (A, B, C, and D which are important radioisotopes when soil is contaminated by them.) were analyzed by using ICP-MS to compare before and after decontamination by BERAD. Since BERAD is the commercial-scale pilot system that decontaminates relatively large amount of soil, so it is difficult to test using radioactive isotopes. So important general elements such as A, B, C, and D in soil were analyzed. In the study, BERAD decontaminated soil by using water washing. And the particle size of soil was divided into a total of six particle size sections with five sieves: 4 mm, 2 mm, 0.850 mm, 0.212 mm, and 0.075 mm. Concentrations of A, B, C, and D in the soil particles larger than 4 mm are almost the lowest regardless of before and after decontamination by BERAD. For soil particles less than 4 mm, the concentrations of C and D decreased constantly after BERAD decontamination. On the other hand, the decontamination efficiency of A and B decreased as the soil particle became smaller, but the concentrations of A and B increased for the soil particle below 0.075 mm. As a result, decontamination efficiency of one cycle using BERAD for all nuclides in soil particles between 4 mm and 0.075 mm is about 45% to 65 %.
The primary objective of this study is to evaluate a systematic design’s effectivity in remediating actual uranium-contaminated soil. The emphasis was placed on practical and engineering aspects, particularly in assessing the capabilities of a zero liquid discharge system in treating wastewater derived from soil washing. The research method involved a purification procedure for both the uranium-contaminated soil and its accompanying wastewater. Notably, the experimental outcomes demonstrated successful uranium separation from the contaminated soil. The treated soil could be self-disposed of, as its uranium concentration fell below 1.0 Bq·g−1, a level endorsed by the International Atomic Energy Agency for radionuclide clearance. The zero liquid discharge system’s significance lay in its distillation process, which not only facilitated the reuse of water from the separated filtrate but also allowed for the self-disposal of high-purity Na2SO4 within the residues of the distilled filtrate. Through a comparative economic analysis involving direct disposal and the application of a remediation process for uranium-contaminated soil, the comprehensive zero liquid discharge system emerged as a practical and viable choice. The successful demonstration of the design and practicality of the proposed zero liquid discharge system for treating wastewater originating from real uranium-contaminated soil is poised to have a lasting impact.
Natural uranium-contaminated soil in Korea Atomic Energy Research Institute (KAERI) was generated by decommissioning of the natural uranium conversion facility in 2010. Some of the contaminated soil was expected to be clearance level, however the disposal cost burden is increasing because it is not classified in advance. In this study, pre-classification method is presented according to the ratio of naturally occurring radioactive material (NORM) and contaminated uranium in the soil. To verify the validity of the method, the verification of the uranium radioactivity concentration estimation method through γ-ray analysis results corrected by self-absorption using MCNP6.2, and the validity of the pre-classification method according to the net peak area ratio were evaluated. Estimating concentration for 238U and 235U with γ-ray analysis using HPGe (GC3018) and MCNP6.2 was verified by -spectrometry. The analysis results of different methods were within the deviation range. Clearance screening factors (CSFs) were derived through MCNP6.2, and net peak area ratio were calculated at 295.21 keV, 351.92 keV(214Pb), 609.31 keV, 1120.28 keV, 1764.49 keV(214Bi) of to the 92.59 keV. CSFs for contaminated soil and natural soil were compared with U/Pb ratio. CSFs and radioactivity concentrations were measured, and the deviation from the 60 minute measurement results was compared in natural soil. Pre-classification is possible using by CSFs measured for more than 5 minutes to the average concentration of 214Pb or 214Bi in contaminated soil. In this study, the pre-classification method of clearance determination in contaminated soil was evaluated, and it was relatively accurate in a shorter measurement time than the method using the concentrations. This method is expected to be used as a simple pre-classification method through additional research.
The decommissioning of nuclear-related facilities at the end of their design life generates various types of radioactive waste. Therefore, the research on appropriate disposal methods according to the form of radioactive waste is needed. This study is about the solidification of uranium contaminated soils that may occur on the site of nuclear facilities. A large amount of radioactively contaminated soil waste was generated during the decommissioning of the uranium conversion plant in KAERI, and research on the proper disposal of this waste has been actively conducted. Numerous minerals in the soil can become glass-ceramic through the phase change of minerals during the sintering process. This method is effective in reducing the volume of waste and the glassceramic waste form has excellent mechanical strength and leaching resistance. In this study, the optimum temperature and time conditions were established for the production of glass-ceramic sintered body of soil. The compressive strength and leachability of the sintered body made by applying the optimal conditions to simulated waste was confirmed. The basic physicochemical properties of simulated soil waste were identified by measuring the pH, moisture content, density, and organic matter content. The elemental compositions in the soil was confirmed by XRF. Soils were classified by particle size, and each sample was compressed with a pressure of 150 MPa or more to prepare a green body. Based on the TG-DSC analysis, an appropriate heating temperature was set (>1,000°C), and the green body was maintained in a muffle furnace for 2~6 hours. The optimal sintering conditions were selected by measuring the compressive strength and volume reduction efficiency of the sintered body for each condition. The difference between the green body and sintered body was observed by XRD and SEM. In the experiments for evaluation of additives, the selected chemical substances were mixed with the soil sample in a rotator. Based on the results of TG-DSC, sintered body was made at 850°C, and the compressive strength and volume reduction were compared. Based on the results, the most effective additive was determined, and the appropriate ratio of the additive was found by adjusting the range of 1~5 wt%. This study was confirmed that the sintered soil waste showed sufficient stability to meet the disposal criteria and effective volume reduction for final disposal.
Korea faces decommissioning the nation’s first commercial nuclear power plant, the Kori-1 and Wolseong-1 reactors. In addition, other nuclear power plants that will continue to operate will also face decommissioning over time, so it is essential to develop independent nuclear facility decommissioning and site remediation technologies. Among these various technologies, soil decontamination is an essential not only in the site remediation after the decommissioning of the highly radioactive nuclear facility, but also in the case of site contamination caused by an accident during operation of the nuclear facility. But the soil, which is a porous material, is difficult to decontaminate because radionuclides are adsorbed into the pores. Therefore, with the current decontamination technology, it is difficult to achieve the two goals of high decontamination efficiency and secondary waste reduction at the same time. In this study, a soil decontamination process with supercritical carbon dioxide as the main solvent was presented, which has better permeability than other solvents and is easy to maintain critical conditions and change physical properties. Through prior research, a polar chelating ligand was introduced as an additive for smooth extraction reaction between radionuclides present as ions in soil and nonpolar supercritical carbon dioxide. In addition, for the purpose of continuity of the process, a candidate group of auxiliary solvents capable of liquefying the ligand was selected. In this research evaluated the decontamination efficiency by adding the selected auxiliary solvent candidates to the supercritical carbon dioxide decontamination process, and ethanol with the best characteristics was selected as the final auxiliary solvent. In addition, based on the decontamination effect under a single condition of the auxiliary solvent found in the Blank Test process, the possibility of a pre-treatment leaching process using alcohol was tested in addition to the decontamination process using supercritical carbon dioxide. Finally, in addition to the existing Cs and Sr, the possibility of decontamination process was tested by adding U nuclides as a source of contamination. As a result of this research, it is expected that by minimizing secondary waste after the process, waste treatment cost could be reduced and the environmental aspect could be contributed, and a virtuous cycle structure could be established through reuse of the separated carbon dioxide solvent. In addition, adding its own extraction capacity of ethanol used for liquefaction of solid-phase ligands is expected to maximize decontamination efficiency in the process of increasing the size of the process in the future.
Today, the domestic and international nuclear power industry is experiencing an acceleration in the scale of the nuclear facility decommissioning market. This phenomenon is also due to policy changes in some countries, but the main reason is the rapid increase in the proportion of old nuclear power plants in the world, mainly in countries that introduced nuclear power plants in the early stages. Decontamination is essential in the process of decommissioning nuclear facilities. Among various decontamination targets, radionuclides are adsorbed between pores in the soil, making physical decontamination quite difficult. Therefore, various chemical decontamination technologies are used for contaminated soil decontamination, and the current decontamination technologies have a problem of generating a large amount of secondary wastes. In this study, soil decontamination technology using supercritical carbon dioxide is proposed and aimed to make it into a process. This technology applies cleaning technology using supercritical fluids to decontamination of radioactive waste, it has important technical characteristics that do not fundamentally generate secondary wastes during radioactive waste treatment. Supercritical carbon dioxide is harmless and is a very useful fluid with advantages such as high dissolution, high diffusion coefficient, and low surface tension. However, since carbon dioxide, a non-polar material, shows limitations in removing polar and ionic metal wastes, a chelating ligand was introduced as an additive. In this study, a ligand material that can be dissolved in supercritical carbon dioxide and has high binding ability with polar metal ions was selected. In addition, in order to increase the decontamination efficiency, an experiment was conducted by adding an auxiliary ligand material and ultrasonic waves as additives. In this study, the possibility of liquefaction of chelating ligands and auxiliary ligands was tested for process continuity and efficiency, and the decontamination efficiency was compared by applying it to the actual soil classified according to the particle size. The decontamination efficiency was derived by measuring the concentration of target nuclides in the soil before and after decontamination through ICP-MS. As a result of the experiment, it was confirmed that the liquefaction of the additive had a positive effect on the decontamination efficiency, and a difference in the decontamination efficiency was confirmed according to the actual particle size of the soil. Through this study, it is expected that economic value can be created in addition to the social value of the technology by ensuring the continuity of the decontamination process using supercritical carbon dioxide.
The purpose of this study was to effectively purify U-contaminated soil-washing effluent using a precipitation/distillation process, reuse the purified water, and self-dispose of the generated solid. The U ions in the effluent were easily removed as sediments by neutralization, and the metal sediments and suspended soils were flocculated–precipitated by polyacrylamide (PAM). The precipitate generated through the flocculation–precipitation process was completely separated into solid–liquid phases by membrane filtration (pore size < 45 μm), and Ca2+ and Mg2+ ions remaining in the effluent were removed by distillation. Even if neutralized or distilled effluent was reused for soil washing, soil decontamination performance was maintained. PAM, an organic component of the filter cake, was successfully removed by thermal decomposition without loss of metal deposits including U. The uranium concentration of the residual solids after distillation is confirmed to be less than 1 Bq·g−1, so it is expected that the self-disposal of the residual solids is possible. Therefore, the treatment method of U-contaminated soil-washing effluent using the precipitation/distillation process presented in this study can be used to effectively treat the washing waste of U-contaminated soil and self-dispose of the generated solids.
Radioactive materials emitted from nuclear accident or decommissioning cause soil contamination over wide areas. In the event of such a wide area of contaminated soil, decontamination is inevitable for residents to reside and reuse as industrial land. There are many ways to decontaminate these contaminated soils, but in urgent situations, the soil washing, which has a short process period and relatively high decontamination efficiency, is considered the most suitable. However, the soil washing process of removing fine soil and cesium by using washing liquid as water and adding a flocculating agent (J-AF) generates slurry/sludge-type secondary waste (Cs-contaminated soil + flocculating agent). Since this form of sludge contaminants cannot be disposed, solidification is needed using an appropriate solidification agent to treat wastes for disposal. Therefore, this study devised a treatment method of contaminated fine soils occurring after the soil washing process. This investigation prepared the simulated wastes of contaminated fine soils generated after the soil washing, and pelletized the samples using a roll compactor under the optimum operating conditions. The optimum conditions of the device were determined in the pre-test. Roll speed, feeding rate, and hydraulic pressure were 1.5 rpm, 25 rpm, and 28.44 MPa, respectively. The waste forms were manufactured by incorporating created pellets (H 6.5 × W 9.4 mm) using polymers as solidification agents. Used polymers were main ingredient (YD-128), hardener (G-1034), and diluent (LGE). The optimum mixing ratio was YD-128 : G-1034 = 65 : 35 phr, and LGE was added in an amount of 10wt% of the total mixture. To confirm the disposal suitability of the manufactured waste forms, characterization evaluation was carried out (compressive strength, thermal cycling, immersion, and leaching test). Characterization evaluation revealed a minimum compressive strength of 23.1 MPa, far exceeding 3.44 MPa of the disposal facility waste acceptance criteria. Compressive strength increased to the highest value of 31.90 MPa after immersion test. To examine leaching characteristics, the pH, Electrical Conductivity (EC) and leachability index () of leachates were identified. As results, pH and EC consistently increased or remained constant with leaching time. The average of Co, Cs and Sr nuclides was 17.76, 17.38 and 14.04, respectively, exceeding the value of 6 in the waste acceptance criteria. Effective waste treatment/ disposal can be achieved without increasing volumes of sludge/slurry by enhancing the technique of this research by performing additional studies in the future.
본 연구에서는 방사성동위원소 추적자 실험을 통해서 산화아연 또는 두 종류의 은나노물질로 오염시킨 토양에서 지렁이 (Eisenia fetida)의 금속축적과 제거율을 비교하였고, 이들을 이온상의 Ag와 Zn으로 처리한 대조구와 비교하였다. 추가적으로 토양의 금속을 다단계추출법 (sequential extraction method)을 이용하여 금속의 결합 형태로부터 생물이용도 (bioavailability)를 예측하고 실제 생물축적 (BAF, bioaccumulation factor)과 비교하였다. ZnO 처리구의 BAF (0.06)는 아연이온 처리구 BAF (1.86)보다 31배 낮았는데, 이는 토양에서 ZnO의 생물전이가 매우 낮음을 제시해 준다. 한편, 은의 BAF는 금속의 오염 형태에에 무관 하게 0.11~0.17의 범위를 보였다. 다단계추출법을 통해서 아연이온 처리구의 아연은 토양에 비교적 약한 결합을 하 는 형태 (mobile fraction)에 35% 분포하여 아연이온처리구 값 (<20%)보다 높았고, 이는 전자의 더 높은 BAF와 일치 한다. 하지만, ZnO 처리구의 다단계추출은 생물이용도나 BAF를 잘 예측하지 못했으며 이는 ZnO가 토양에서 아연 이온과 지화학적으로 다른 거동을 하기 때문으로 추정된다. 지렁이 체내에 축적된 은의 제거율 (3.2~3.8% d-1)은 아연의 제거율 (1.2~1.7% d-1)보다 2~3배 더 높았다