Due to the rapid advancements in power distribution, television, and telecommunication, aerial cables have been rampant in urban cities. Aerial cables, while cost-effective, contribute to visual pollution, pose safety hazards, and complicate urban planning. To solve these challenges, many cities are exploring new ways to construct these cables without the use of high poles and one of the solutions is transitioning to underground cable by minitrenching method. Minitrenching offers a less invasive, more efficient solution for underground cable deployment. This study highlights the potential of innovative minitrenching materials to enhance underground cable protection while addressing the limitations of aerial cable installations in urban settings. Three minitrenching materials were evaluated to determine their effectiveness in protecting underground cables from heavy truck loads using finite element method (FEM). The materials tested were: (1) sand backfill with asphalt concrete surface, (2) cement mortar backfill with self-compacting mastic asphalt surface, and (3) cement mortar backfill with asphalt concrete surface. Results showed that the proposed materials (cement mortar and self-compacting mastic asphalt) significantly reduced strain on the underground cable compared to traditional materials (sand and asphalt concrete). The strain values decreased from 713 microstrains with traditional materials to 333 microstrains with the proposed materials, representing a reduction of approximately 53%. The third combination, intended as a maintenance material, yielded an intermediate strain value of 413 microstrains, demonstrating its acceptability as a minitrenching material.
본 연구는 특수한 조건에서의 줄눈 콘크리트포장의 설계 및 성능에 관한 분석을 목적으로 한다. 줄눈 콘크리트포장은 시멘트 콘크리트 포장의 한 형태로, 오랜 기간 도로 포장형식으로 사용되어 왔다. 이 포장 방식은 철근을 사용하지 않는 대신, 콘크리트 슬래브의 균열을 줄눈을 통해 유도하고, 다월바와 타이바를 통해 슬래브에 생기는 응력을 줄이는 방식이 다. 대한민국의 다양한 지역 환경과 계절적 특성은 도로 포장설계에 주요한 인자로 적용된다. 특히, 슬래브의 부등건조수 축이 평탄성 문제의 주요 원인으로 지적되며, 이는 온습도의 변화에 의해 발생한다. 본 연구에서는 3차원 유한요소해석 을 활용하여 줄눈 콘크리트포장 슬래브의 거동을 분석하고, 콘크리트 슬래브의 두께, 줄눈 간격, 타이바 및 다웰바의 배 치 등 주요 설계 변수의 영향을 평가한다. 이러한 설계 인자들이 슬래브의 응력과 변위에 미치는 영향을 확인하며, 다양 한 환경 조건 하에서의 설계 방법의 유효성을 검증한다. 본 연구는 줄눈 콘크리트포장의 실제 배치 방식을 모델링하여, 기존 설계 방식의 보안 사항을 파악하고, 설계 기준 내에서의 주요 인자 변화를 통해 부등건조수축을 완화할 수 있는 방 안을 제시한다. 이를 통해, 특수 환경 조건에서의 온습도 영향을 고려한 효율적인 포장 설계 방안을 도출함으로써, 도로 포장의 평탄성과 내구성 향상에 기여하고자 한다.
본 연구에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 위상분야법(Phase-field method)에 대해 소개하고자 한다. 위상분야법은 최근 균열 개시 및 전파 해석에 많이 사용되는 기법으로 균열 표면을 추적하기 위한 추가적인 처리기법이 필요하 지 않는 특징이 있다. 위상분야법에서 복잡한 균열 전파를 포착하기 위해 높은 정확도의 변형률 에너지를 평활화 유한요소법을 도입 하여 계산하였다. 평활화 유한요소법은 유한요소를 하위 셀로 나누고 각각의 하위 셀을 평활화 영역으로 재조립하여 변형률 에너지 를 계산하게 된다. 또한 해석 시간 단축을 위하여 쿼드트리 요소망을 제안한 기법에 사용하였다. 수치 예제를 통하여 제안한 기법을 참 조해 및 유한요소법과 비교하여 검증하였다.
Radiant tubes heat exchangers are critical components that facilitate the heat transfer process to steel in an annealing furnace, and it addresses several engineering problems, such as thermal stress and mechanical failure due to long-term thermal cycling, which can significantly affect the longevity of the tubes and maintenance requirements. In this study, we used commercial software (ANSYS) to simulate the thermal stress and deformation of radiant tubes subjected to extreme thermal conditions and pressure loads. We evaluated both thermally induced deformation and creep deformation, which is a time-dependent deformation under constant stress over the long term. The results showed that uneven temperature conditions and pressure loads lead to significant deformation and potential failures. To mitigate these engineering challenges, we also tested several designs that include supporting brackets. This study provides valuable insights for designing radiant tube heat exchangers in annealing furnaces to extend their lifespan and ensure system safety.
In this paper, a method of reducing the weight of vehicle wheels through topology optimization by finite element method is proposed. Recently, various environmental pollution caused by the operation of vehicles is gradually increasing, and this has a great correlation with the fuel efficiency of the vehicle. Therefore, it is required to reduce the weight of the vehicle to increase fuel efficiency. Among them, the vehicle's wheels are a key part of vehicle acceleration and braking, and passenger safety. Because the shape of the wheels is different, various effects such as reduced fuel economy and reduced airpower occur as well as aesthetic factors. The stiffness of the wheels plays an important role in transmitting the vehicle's power to the tires and braking. In this study, to reduce weight while satisfying the stiffness value, we propose to use topology optimization to design an arbitrary shape according to the number of spokes on the wheel.
Metal bodies have generally been produced through machining process, even the smallest parts that are assembled and mounted on the metal body. In this study, we will study the process of manufacturing parts called SIM Tray through compound forging process instead of cutting. The process of replacing a series of SIM Tray production process with a composite forging process by simulating the forming process using DEFORM-3D and making process design, mold design, mold fabricating.
In this study, the flow analyses were carried out on the electric train models with three kinds of mounting materials installed at the front part of train. By examining the results of flow rate and pressure, It was investigated which type of design should be designed to be more efficient in high-speed operation. The three types of models are set as models a, b and c, and each has its own shape. For all models, the wind speed was set at 110 km/h, the most common driving speed for wide-area electric trains. In the case of the model a, it was good at cutting the wind flow as a round shape when viewed from the top. But from the side, it showed a vortex forming in the upper corner. To the contrary, the model b, which has a wedge-shaped side, could be seen from the top as a result of a vortex. Finally, in the case of model c combined with models a and b, the least vortex, front pressure, and resistance forces were shown by selecting the flow advantages of models a and b. By utilizing this study result, the flow velocity and pressure are investigated without flow experiment by shape of the front part of electric train, and the flow capacity can be seen.
In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.
Welding is the most convenient method for fabricating steel materials to build ships and offshore structures. However, welding using high heat processes inevitably produces welding displacements on welded structures. To mitigate these, heavy industries introduce various welding techniques such as back-step welding and skip-step welding. These techniques effect on the change of the distribution of high heat on welded structures, leading to a reduction of welding displacements. In the present study, various cases using different and newly introduced welding techniques are numerically simulated to ascertain the most efficient technique to minimize welding displacements. A numerical simulation using a finite element method based on the inherent strain, interface element and multi-point constraint function is introduced herein. Based on several simulation results, the optimal welding technique for minimizing welding displacements to build a general ship grillage structure is finally proposed.
In this study, we investigated the properties of adhesive materials with different lightweight materials such as CFRP and Al-foam. The specimens were tested and analyzed using DCB (Double Cantilever Beam) specimens. In order to secure the reliability of the finite element method, the test and analysis were carried out, and the reliability of the finite element method was secured by using the graph of reaction force to displacement based on the experiment and analysis. The study on the adhesive failure characteristics according to the position of notch hole proceeded. Notch holes were generated at the locations of 40, 110, 150 and 190 mm from the beginning of the specimen near the bonding interface, and the analysis conditions used were the same as those used for securing reliability. The obtained study results are compared with reaction force and equivalent stress. In the case of reaction force, the overall tendency is similar but the difference in maximum reaction force is found. It was found that higher reaction forces appeared at the beginning than at the end of the bonding interface. When the equivalent stresses in the specimens were examined, the value of CFRP was seen to be 30 times higher as much as that of Al-foam.
The design and analysis of the rigidity and deformation of the vehicle body are basically performed in two forms. First, the relative response of components separated from a parent system or connected as a model of a subsystem is examined. Second, the entire model is used to consider the absolute response of the components to the externally transmitted vehicle service load, which is defined as that of the entire vehicle body system. In this paper, we propose the finite element modeling for the structural design of the car body. First, we will explain the simple finite element modeling of the car body, explain the method of formulating the stiffness of the joint, and finally the shell element. The proposed finite element modeling is proposed. By applying the proposal, it is possible to propose finite element modeling of all medium and large passenger cars less than 3 tons.
하천의 생태 환경적인 측면을 고려하여 여러 가지 친환경적인 호안공법이 적용되어 시공되는 사례가 증가하고 있다. 친환경적인 호안공법으로는 식생공이 대표적이나 중량물을 시공하는 호안공법과 달리 식생매트를 고정핀으로 고정하는 방식의 식생매트와 같은 호안공법의 경우 중량물을 설계하는 여타의 공법과 달리 적합한 설계방법이 없어 경험적인 방법을 통해서 제 품의 개발과 시공이 이루어지고 있는 실정이다. 따라서 본 연구에서는 식생매트공법에 사용되는 고정핀과 고정핀이 정착된 지반을 모델링하고 유한요소법을 활용하여 호안식생매트의 안전성을 평가하였다. 해석결과 핀의 상단 부분에서 인발에 저항하기 위해 인장응력이 유발되고 있으며, 헤드 부분은 거의 응력이 작용하지 않는 것으로 나타났고, 핀의 Von Mises 응력값이 인장강 도에 비해 낮게 나타나 파괴모드가 재료 자체의 항복 또는 파쇄에 의한 파괴가 아닌 핀과 지반사이의 뽑힘이 전체 거동을 지배 한다고 평가하였다. 본 연구는 유한요소법을 통해서 식생매트공법의 안전성을 변위와 발생응력에 대하여 평가하였다.
본 논문은 고전적인 오일러-베르누이 보의 집중소성힌지 모델링을 위한 일반유한요소법을 제안한다. 이 기법에서 소성힌지는 해의 약불연속을 묘사하는 적절한 확장함수에 의해 모델링되며, 요소간의 연결성을 변화시키지 않으면서 임의의 위치에 소성힌지를 삽입하는 것이 가능하다. 대신 소성힌지는 이미 존재하는 요소에 위계적으로 자유도를 추가함으로써 형성된다. 제안된 기법의 유효성을 검증하기 위해 수치해석 예제에 대해 h-, p-확장과 같은 수렴성 해석을 수행하였다. 수렴성 해석의 결과가 제안된 기법이 소성힌지가 절점 및 요소 내의 임의의 위치에 존재하는 두 가지 경우 모두에 대하여 유한요소이론에 의한 수렴속도를 얻을 수 있음을 보여주어 기법의 정확성을 입증하였다.
PURPOSES: The objective of this study was to develop an asphalt pavement response model for a subsurface cavity section using the 3D finite element method and a statistical approach.
METHODS: It is necessary to analyze the structural behavior of asphalt pavement with a subsurface cavity to evaluate the degree of risk for a road cave-in. A 3D finite element model was developed to simulate the subsurface cavity underneath asphalt pavement and was verified using the ILLIPAVE program. Finite element analysis was conducted for asphalt pavement sections with different asphalt layer thickness/modulus, and cavity depth and length, to generate the artificial pavement response database. The critical pavement response considered in this study was the tensile strain at the bottom of the asphalt layer because fatigue cracking is the main cause of road cave-in. The relationship between the critical pavement response and influencing factors was investigated using the pavement response database. The statistical regression approach was adopted to develop the asphalt pavement response model for predicting the critical pavement response of asphalt pavement with a subsurface cavity.
RESULTS : It was found from the sensitivity analysis that the asphalt layer thickness or modulus, and cavity depth or length, are the major factors affecting road cave-in incidents involving asphalt pavement. The asphalt pavement response model showed high accuracy in predicting the tensile strain at the bottom of asphalt layer. It was found from the verification study that the R square value between finite element model and pavement response model were 0.969 and 0.978 in the cavity and intact sections, respectively.
CONCLUSIONS: The work reported in this paper was intended to figure out the pavement structural behavior and to develop a pavement response model for the occurrence of cavities underneath asphalt pavement using 3D finite element analysis. In the future, critical pavement response will be utilized to establish the criteria of risk of road cave-in based on various different conditions.
범용유한요소프로그램인 Abaqus의 확장유한요소법(XFEM)의 사용성 검증을 위하여 2차원 모델에 적용하여 수치해석을 수행하였다. 기존의 연구에 많이 사용되었던 응집요소(cohesive element) 모델은 균열 경로를 예측하고 요소를 삽입하여야 하는 단점 때문에 실제 균열을 모사하는데 한계가 있다. 이러한 이유로 응력의 방향성 및 특이성을 바탕으로 균열의 경로를 예측하는 확장유한요소법(XFEM)이 균열 해석에 있어서 더 발전된 방법으로 이용되어 왔다. 이번 연구에서는 균열의 경로가 자명한 2차원 모델에 사용하여 응집요소해석과 XFEM에 응집요소의 물성을 적용한 해석을 비교하고 XFEM 적용의 타당성을 확인하였다. 수치해석으로 균열 발생 직전의 응력분포 및 응력 특이성을 확인하고 실제 균열 발생경로와의 비교를 한다. 본 연구를 바탕으로 몇 가지의 한계를 극복하면 실제 복잡한 모델의 실제 균열진전해석을 수행하여 균열을 모사할 수 있을 것으로 기대된다.
비선형 유한요소해석 결과를 이용하여 철근콘크리트 부재를 설계를 하고자 할 경우 위험단면에서의 휨모멘트를 산정하여 야 한다. 본 논문에서는 연속체 요소를 사용한 철근콘크리트 유한요소해석 결과를 이용한 휨 모멘트 계산식을 제시하고 유한요소의 변위 함수의 차수에 따른 최적의 요소 크기를 제안하였다. 해석으로부터 산출된 응력을 적분하여 구한 휨 모멘트 와 정역학적 평형 조건을 이용하여 계산한 휨 모멘트를 비교하였다. 응력을 적분하는 방법에서는 철근에 의한 응력과 콘크 리트의 응력을 모두 고려하였다. 또한 유한요소해석으로 산출된 응력의 정확도에 영향을 주는 여러 요인들을 분석하고 적용 요소의 변위 함수와 요소 크기를 다르게 설정하여 그 영향을 확인하였다. 해석의 목적이 부재의 거동을 대략적으로 살펴보 는 목적이라면 1차 변위 함수를 사용하고 요소 크기가 해석 모델의 단면 높이의 25%정도라도 적절하다고 판단된다. 정확도가 높은 부재의 내력을 도출해야 할 경우에는 2차 변위 함수를 사용하고 요소 크기를 12.5%로 할 것을 제안한다.