The government is implementing a policy to expand eco-friendly energy as a power source. However, the output of new and renewable energy is not constant. It is difficult to stably adjust the power supply to the power demand in the power system. Therefore, the government predicts day-ahead the amount of renewable energy generation to cope with the output volatility caused by the expansion of renewable energy. It is a system that pays a settlement amount if it transitions within a certain error rate the next day. In this paper, Machine Learning was used to study the prediction of power generation within the error rate.
For the Floating Photovoltaic development project, economic analysis is conducted by predicting the amount of power generation in consideration of climate factors. Among the climate factors, the outside temperature increases the temperature of the module. As a result, the efficiency of the module is reduced. Due to global warming, the outside temperature is rising every year, when estimating the amount of power generation over the next 20 years, a more accurate prediction will be possible only when considering the temperature rise.
기존 화석 연료의 고갈 및 환경오염의 문제와 대용량 발전을 위하여 해양환경 및 자원을 이용한 친환경에너지 발전에 대한 연구 및 개발이 증가하고 있으며, 이 중 높은 발전 효율을 가진 해상태양광 발전에 대한 연구가 크게 증가하고 있다. 환경하중이 비교적 약한 내수조건과 달리, 환경하중이 강한 해양에서의 태양광 발전을 위해서는 더 강한 강성의 구조재를 사용해야 한다. 하지만, 구조재의 생 산 가능성, 무게를 포함한 구조물 특성 및 경제적 효율성 등의 제약조건이 발생할 수 있다. 따라서, 본 연구에서는 부유식 방파제를 설 치함으로써 태양광구조물에 작용하는 파랑하중을 감소시켜 구조재의 강성 강화를 최소화하고자 하였다. 부유식 방파제의 크기 및 구 조물로부터의 거리를 변화하여 이에 따른 파랑하중 및 구조재 응력의 감소 정도를 확인하였다. 다수 부력체의 상호간섭을 고려한 파 랑하중의 경우, 고차경계요소법(Higher-Order Boundary Element Emthod)을 이용해 산정하였으며, 구조재에 작용하는 응력은 유한요 소법(Finite Element Method)을 통해 평가하였다. 각 조건에서의 최대응력을 분석 및 비교함으로써 해상태양광 발전 시스템에 대한 부 유식 방파제의 영향을 확인하였으며, 부유식 방파제의 크기가 파랑하중 및 구조재 응력 감소에 큰 영향을 미침을 확인하였다.
본 연구는 충주댐 (청풍호)의 부유식 수상태양광 발전 시스템 (FPV)이 수질에 미치는 영향을 조사하고자 하였다. 충주댐 (청풍호) FPV는 수표면적 (97 km2)의 0.04% 를 차지 한다. FPV 설치 전후 호수 전체의 수질을 비교·분석하였다. 전체 호수의 DO, BOD, TOC 및 Chl-a는 설치 기간 후 유의한 수준 (p<0.05)에서 증가한 반면, 전기전도도는 감소하였다. 이는 동일한 비교 기간 동안 40% 증가한 강수량 으로 인해 영양염류 유입이 증가한 때문으로 판단된다. 또한 2017년 5월과 11월 FPV 중앙 직하부 (FPVC) 및 영향권 지점에서 수질 인자를 측정·비교하였다. 그 결과, FPVC와 영향권 지점의 수질 인자가 통계적으로 다르지 않았으며 (p>0.05), FPV 시설이 수질 저하를 유발하지 않음을 보여주었다. 2018년 9월부터 11월까지 5차례에 걸쳐 수온, 광도 및 식물 플랑크톤 군집도 수심별로 측정·분석하였다. 수온은 지점별로 다르지 않았으며, 광도는 FPVC에서 27~50%로 감소한 것으로 조사되었다. 대조구와 비교해보면 감소된 광도에도 불구하고 FPVC에서 조류의 출현종과 현존량이 유의미하게 다르지 않았다 (p>0.05). 그러나, 11월 초의 시료의 경우, FPVC에서 Aulacoseira 속에 속하는 부착 규조류가 우점하였으며 대조구보다 현존량이 상당히 높았다. 이는 FPV 시스템에 의한 일시적이고 국부적인 정체 수역 형성과 관계있을 것으로 판단된다. 본 연구 결과는 향후 수상태양광 설치에 관한 정책수립에 필요한 기초 자료를 제공할 수 있을 것으로 판단된다. 또한 수상태양광 시설에 대한 장기적인 수질 모니터링과 수상태양광 시설에 의한 수리동역학적 연구, 수상태양광의 설치 면적과 수질과의 상관관계 연구 등이 필요하며 이를 통해 수상태양광 활용성을 극대화 시킬 수 있을 것으로 보인다.
국가 신재생에너지개발 장려정책으로 농업용저수지 내 수상태양광 발전시설 설치가 확대되고 있음에도 불구하고, 수상태양광 발전시설 설치가 수생태계에 미치는 영향을 판 단할 수 있는 장기적인 조사나 과학적 연구가 부족한 실정 이다(노 등, 2015). 일반적으로 수상 태양광 발전시설 설치 지역은 수온, 증발량 등의 물리적 환경변화가 국지적으로 발생하기 때문에(노 등, 2014; Melvin, 2015; Sahu, 2016), 미소생태계(microecosystem)가 형성되어 수생생물의 분포 및 군집특성의 변화로 이어진다. 따라서 수상태양광 설치지 역과 설치가 되지 않은 지역 간 어류군집 특성을 비교함으 로서 수상태양광 설치가 수생태계에 미치고 있는 영향을 간접적으로 유추할 수 있다. 특히, 수생태계의 영양단계 (trophic level)에서 상위단계에 해당하는 어류의 군집 특성 및 분포는 미소생태계의 형성유무와 형성된 미소생태계의 영양구조를 설명할 수 있는 근거가 된다. 수상태양광이 설치되어 있는 2개의 저수지는 실험군으로 하였고, 기후, 수상태양광 규모(전력생산량), 저수지 규모, 유역특성이 비슷한 인근의 저수지 1개소는 대조군으로 선 정하였다. 조사지점은 수상태양광 설치지역으로부터 일정 거리별(200~250m)로 6지점(수상태양광 발전시설 설치지 점을 기점으로 1~6번으로 지점번호 부여)을 선정하였으며, 지점별로 12절 자망(50m)을 설치한 후 24시간이 경과된 시점에서 어류를 채집하여 동정하였다. 장마기간 전·후로 총 2회의 어류조사를 실시하였으며, 현장조사 결과를 토대 로 종다양도를 산출하고 지점 간 유사도를 살펴보기 위해서 군집분석을 실시하였다. 현장 조사결과, 실험군인 A저수지는 총 8종 129개체가 채집되었으며, 블루길이 전체 개체수의 78.3%로 우점하였 다. 상대적으로 수변지역과 가까운 2번과 6번 지점이 각 5종, 7종으로 종수가 많았으며, 수상태양광 발전시설이 설 치된 지역과 가장 인접한 1번 지점에서는 타 조사지점에서 도 공통적으로 관찰되는 2종(백조어, 블루길)이 유사한 개 체수로 관찰되었다. 군집의 유사도 역시 1, 3번 지점과 4, 5번 지점, 그리고 2번, 6번 지점으로 그룹화되어, 수상태양 광 발전시설 설치지역으로부터 이격거리별로 종다양도 변 화는 없는 것으로 나타났다. 실험군인 B저수지는 총 3종만 이 관찰되어 어류 군집특성을 파악하기에 어려움이 있었다. 대조군인 C저수지는 총 11종 950개체가 채집되었으며, 치 리와 모래무지가 전체 종조성의 83.2%를 차지하였다. 출현 종수가 6~7종으로 조사지점별로 종조성이 유사하였으며, 군집분석 결과 역시 1, 3, 4번 지점과 2, 6번, 5번 지점으로 그룹화되어 특별한 경향성을 보이지 않았다. 본 연구결과로부터 수상태양광 발전시설 설치로 인한 물 리적 환경변화는 어류 군집특성의 변화를 유도할 만큼 크지 않다는 것을 알 수 있다. 실제 실험군에 설치된 수상태양광 발전시설은 수면과 접촉되지 않고 일정한 높이로 이격되어 있고, 태양광 패널을 지지하는 부력체 역시 수평적인 물순 환을 저해하지 않아 인근 수체와 연속적인 생태계로 볼 수 있다. 다만 본 연구의 조사방법이 수상태양광 발전시설 설 치지역과 그렇지 않은 지역의 어류군집 특성을 구분할 만큼 정밀도가 높지 않았다는 연구의 한계가 있을 수 있다. 따라 서 태양광 발전설비에 의한 수생태계 영향 규명을 위해서는 저수지 전체를 대상으로 수상태양광 발전시설 설치로 인한 에너지유입량, 1차 생산량 변화, 수생태계 영양구조 및 먹이 그물 변화 등에 대한 시스템적 연구가 함께 이루어져야 할 것으로 판단된다.
In this paper, we present the result of investigations pertaining to the development of links between unit modules of the floating type photovoltaic energy generation system made of Pultruded FRP. Since the FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of the floating type photovoltaic energy generation system. we discussed the development concepts of the link between unit module of floating type photovoltaic energy generation system made of PFRP, tire, and synthetic fiber, briefly. The floating type photovoltaic energy generation system linked between unit modules is installed successfully at sea site.
이 논문는 펄트루젼 FRP 부재를 이용하여 부유식 태양광발전 시스템을 개발하기 위한 연구의 결과이다. 이미 설치 된 부유식 태양광발전 시스템의 단위구조물에 추가적인 단위구조물의 연결을 위하여 연결부를 설계하여 유한요소 해석을 통한 검증을 실시하였으며, 실제 현장에 기존 단위구조물과 연결부를 포함한 단위구조물의 연결부를 성공적 으로 시공하였다. 또한 기존 설치 구조물의 현장계측을 통하여 변위와 변형률을 얻어 기존의 실험 결과와 비교하여 구조물이 충분히 안전함을 확인하고 이를 바탕으로의 부유식 태양광발전 시스템의 설계 변경을 실시하였다. 설계변 경된 구조물에 대한 유한요소해석을 실시하였고 이를 허용응력과 비교하여 안전성을 검증하였다. 이로써 더욱 효율 적인 구조물을 개발하였으며 구조물의 제작하였다. 설계 변경된 단위구조물의 제작을 위한 펄트루젼 FRP부재의 생 산하였으며, 부유식 태양광 에너지 발전시설 구조물을 조립하였다.
기존의 파랑에 의한 부유체 해석은 유체에 의한 압력을 스프링 하중으로 가정하여 해석을 하거나 구조물의 변위가 커서 격자의 겹칩현상에 의한 제약으로 인해 파고가 비교적 작을 때에만 해석이 용이했었다. 본 연구에서는 국내적용이 가능하도록 저수지수면이나 연안과 같은 공유수면위에 띄어 발전을 하는 부유식 태양광 발전시스템의 안전성 검토를 위해 유체-구조 연성해석을 실시하였다. 기존 부유체 구조물 해석에서 파랑에의해 발생하는 구조체에서의 압력해석과 구조물의 응력해석을 따로 실시하였지만 본 연구에서는 동시에 해석이 가능하도록 하였다. 또한, 유체와 연동되는 부분을 부유체로 제한하여 격자의 겹침현상을 방지하였다. 이를 위해 구조해석 모듈과 유체해석 모듈이 함께 포함되어 있는 ANSYS 프로그램을 사용하였다. 파랑에 의해 부유체가 상하로 이동할 때 발생하는 응력을 검토하였으며 단위구조물 2개가 힌지로 연결되어 있는 경우에 대해서 구조체 프레임과 연결부의 안전성도 검토하였다. 풍속이 30 m/s 일 때와 45 m/s일 때로 풍파를 산정하여 파랑의 경계조건으로 사용하였다. 구조물 해석시 태양광 발전모듈에는 응력이 작용하지 않는다고 판단하여 본 해석에서는 제외하였다. 수치모의 결과 파고가 높은 경우가 응력의 최대값이 7.9~9.5 % 더 크게 산정되었으며 부유구조체의 지지점이 3개 일 때가 6개 일 때 보다 최대응력이 약 6배정도 크게 산정되었다.
In this paper, we suggest the new floating type photovoltaic energy generation system, which is improved the structural and economical efficiency, compared with the system developed in the previous research. The structural system in new floating type photovoltaic energy generation system reveals better in structural performance.