In a steam turbine system for nuclear power plant, the exhaust loss consists of leaving loss, hood loss, turn-up loss and restriction loss. The exhaust loss during rated power operation of steam turbine equipment is inevitable, but it can be optimized by several factors such as last stage blade length, condenser vacuum and steam velocity. In this paper the relationship between the exhaust loss and electrical output of domestic nuclear power plants was quantitatively evaluated, and ways to reduce this loss were considered.
Recent, there has been a need for a terminal device with artificial intelligence to detect emergency situations in various means of transportation to prevent overdischarge of the battery even when parking the vehicle for a long time so that the driver can properly prepare. The transmission system, which guides the situation and location information of the vehicle, uses AHD video technology and RTOS technology to reduce the load of wireless networks by increasing the video playback rate through UDP implementation by WiFi, and stabilizes through wireless networks and low-power sensors using LoRa services.
Fish school monitoring technology is utilized for various purposes, such as boat fishing and resource surveys. With advancements in information and communication technology, this technology has expanded its application to remote areas. Its significance has grown in fishing sites, particularly for improving the efficiency and cost-effectiveness of set-net fishing. Set-net fishing gears are not limited to coastal areas, but are also installed in inland and remote sea regions. Consequently, fishermen require technology that allows them to quickly transmit information about approaching fish schools and enables them to perform long-term monitoring. The development of remote monitoring technology for set-net fish schools must consider crucial design factors such as communication range, transmission speed, power consumption of information modules, and operational expenses. In this study, we developed a low-power remote monitoring module for set-net fish school based on WCDMA. The module was specifically designed to minimize power consumption, allowing for communication over long distances and extended operation times in set-net fishing applications. Furthermore, we developed a web server software application that enables remote access to fish schools and provides real-time weather information. The performance of the developed module was evaluated through set-net fishing site application and experiments with moving ships on the sea. The experimental results demonstrated that the remote monitoring system, consisting of the developed low-power remote monitoring module for set-net fish school based on WCDMA and a fish finder, had an average power consumption of 4.6 W, a maximum communication range of 22.84 km, and a data transmission and reception rate of 98.79%. The maximum fish school information transmission and reception rate was 97.26%.
사회기반 시설물의 노후화에 대응해 이상 징후를 파악하고 유지보수를 위한 최적의 의사결정을 내리기 위해선 디지털 기반 SOC 시설물 유지관리 시스템의 개발이 필수적인데, 디지털 SOC 시스템은 장기간 구조물 계측을 위한 IoT 센서 시스템과 축적 데이터 처 리를 위한 클라우드 컴퓨팅 기술을 요구한다. 본 연구에서는 구조물의 다물리량을 장기간 측정할 수 있는 IoT센서와 클라우드 컴퓨팅 을 위한 서버 시스템을 개발하였다. 개발 IoT센서는 총 3축 가속도 및 3채널의 변형률 측정이 가능하고 24비트의 높은 해상도로 정밀 한 데이터 수집을 수행한다. 또한 저전력 LTE-CAT M1 통신을 통해 데이터를 실시간으로 서버에 전송하여 별도의 중계기가 필요 없 는 장점이 있다. 개발된 클라우드 서버는 센서로부터 다물리량 데이터를 수신하고 가속도, 변형률 기반 변위 융합 알고리즘을 내장하 여 센서에서의 연산 없이 고성능 연산을 수행한다. 제안 방법의 검증은 2개소의 실제 교량에서 변위계와의 계측 결과 비교, 장기간 운 영 테스트를 통해 이뤄졌다.
This study purposed to examine the effect of low power laser on pain response and axonal regeneration. In order to prepare peripheral nerve injury models, we crushed the sciatic nerve of Sprague-Dawley rats and treated them with low power laser for 21 days. The rats were divided into 4 groups: normal group(n=10); control group(n=10) without any treatment after the induction of sciatic nerve crush injury; experimental group I(n=10) treated with low power laser(0.21mJ/㎟) after the induction of sciatic nerve crush injury; and experimental group II(n=10) treated with low power laser(5.25mJ/㎟) after the induction of sciatic nerve crush injury. We measured spontaneous pain behavior(paw withdrawal latency test) and mechanical allodynia(von Frey filament test) for evaluating pain behavioral response, and measured the sciatic function index for evaluating the functional recovery of peripheral nerve before the induction of sciatic nerve crush injury and on day 1, 7, 14 and 21 after the induction. After the experiment was completed, changes in the H & E stain and toluidine blue stain were examined histopathologically, and changes in MAG(myelin associated glycoprotein) and c-fos were examined immunohistologically. According to the results of this study, when low power laser was applied to rat models with sciatic nerve crush injury for 21 days and the results were examined through pain behavior evaluation and neurobehavioral, histopathological and immunohistological analyses, low power laser was found to affect pain response and axonal regeneration in both experimental group I and experimental group II. Moreover, the effect on pain response and axonal regeneration was more positive in experimental group I to which output 0.21mJ/㎟ was applied than in experimental group II to which 5.25mJ/㎟ was applied.
연안에서 목적으로 하는 어업에 적합하도록 소형 어군탐지기를 효율적으로 설계하고 평가할 수 있는 방법에 대해 검토하기 위하여 일반적으로 사용되고 있는 어군탐지기의 특성과 탐지범위 등에 대해 조사하였다. 먼저 일반적인 어군탐지기의 빔폭은 주파수와 송신전력이 상승함에 따라 좁아지고 송수파기의 직경은 송신전력이 증가함에 커지는 경향을 보였다. 이 특성을 이용하여 상업적으로 사용되는 일반적인 어군탐지기의 신호대 잡음비를 유도하였다. 탐지거리와 탐지폭으로 구성되는 탐지범위는 이 신호대 잡음비(SN비)로부터 얻을 수 있다. 탐지거리는 주파수의 증가와 함께 증가하였지만 고주파에서는 흡수계수의 영향으로 원거리 탐지가 어려워진다. 즉 송수파기 직경, 송신전력의 증가에 따른 효과는 저주파에서는 크고, 고주파에서는 적은 경향을 보인다. 탐지범위 등을 종합적으로 응용하여 휴대용 어군탐지기의 설계 범용도를 작성하였다. 범용도에는 SN비를 송수파기의 직경, 빔폭, 탐지거리를 변수로하여 주파수에 대해 표시하였다. 범용도에서 SN비가 높고 실용성이 높은 적절한 설계영역을 표시하였다. 설계영역에서 설계점을 정하면 전체적으로 적절한 설계를 할 수 있다. 설계범용도는 어군탐지기의 성능평가에도 응용할 수 있다.
This study was designed to determine the effects of swimming and low power laser on rheumatoid arthritis in Sprague-Dawley rats. Rheumatoid arthritis was induced in 36 rats among 48 Sprague-Dawley rats by the subcutaneous injection of .05 ㎖ Freund's Complete Adjuvant into the right hind paw and .05 ㎖ Freund's Complete Adjuvant into the right hind knee joint capsule. A second injection was performed by the same method using .1 ㎖ Freund's Complete Adjuvant per a rat. Arthritic rats were divided into 8 groups: each 1 week and 2 weeks of arthritic swimming, arthritic laser, arthritic case control and normal group. In this study, several experimental tests were performed to determine the concentration of Interleukin-6, the space of the knee joint and the thickness of the hind paw. The concentration of Interleukin-6 and hind paw thickness decreased in the swimming group and laser group as compared to the control group. The space of the knee joint increased significantly after the swimming exercise. Swimming and low power laser therapy positively affect rheumatoid arthritis in rats affect by decreasing the concentration of Interleukin-6 and hind paw thickness, and increasing the space of the knee joint.
본 논문은 PDP TV에서 주위 환경을 고려한 색 재현 방법을 제안한다. 관찰자의 시공간적인 위치에 따
라 주변 환경이 변하기 때문에, 디스플레이의 색 재현 과정에서 주위 조명은 반드시 고려되어야 한다. 주변 환경을 고려하기 위한 기존의 방법은 각 채널에서 전압의 이득을 조절함으로써 계조와 포화도를 향상시키기 때문에 인간의 순응 현상을 구현하는데 한계가 있으며, 이에 따라 다양한 주위 조건하에서 인지된 색을 재현하는데 어려움이 있었다. 따라서 이를 해결하기 위해, 본 논문은 PDP의 물리적 특성인 플레어 현상을 고려하였으며, 밝기에 기반하여 특성화 과정을 수행하였다. 또한, 센서로 획득된 주위 조명의 색온도 및 밝기값의 정보를 이용하여 색 순응현상을 적용하였다. 특히 암실에서는 색순응 현상을 적용함으로써 저전력 구동이 가능하였으며, 실험을 통해 제안한 방법이 기존의 방법에 비해 시각적 평가에서 더 우수함을 확인하였다.
The present study investigated the hypothesis that a extremely low frequency magnetic field (ELF-MF) partially suppresses the synthesis of human growth hormone (HGH) in a group of 28 primary schoolchildren living nearby and 60 primary schoolchildren aged 12 years living far away from overhead transmission power lines from December 2003 to April 2004 in Seoul, Korea. The mean personal exposure levels of the primary schoolchildren living nearby overhead transmission power line were 0.37 μT, whereas the levels for the primary schoolchildren living away from overhead transmission power line was 0.05 μT. From simple analyses, the mean growth hormone levels in the primary schoolchildren living nearby were lower than away from overhead transmission power line, and statistically significant differences in the levels of the growth hormone (p = 0.0316), whereas not statistically significant differences in the levels of the growth hormone related to the distance from residence to power line less and more than 100 m by cut-off point (p = 0.4017). In conclusion, these results may indicate that urinary levels of nocturnal growth hormone are altered in primary schoolchildren exposed to extremely low frequency magnetic field at overhead transmission power line.
The purposes of this study was to evaluate the effect of low power GaAsAl laser on tissue contraction in a linear incision wound on rat skin. The linear incision wound was made on the midline of the backside in the experimental animals. Low power laser applications with different intensities such as 3, 6, or 10 mW were applied to the experimental animals twice a day for 10 days. On either the seventh or tenth postoperative day, the quantitative analysis of the inflammatory reaction surrounding the linear incision wounds on the rats were performed using enzymatical analysis of myeloperoxidase (MPO) activity. The number of neutrophil was from a normal blood sample that was obtained from the normal experimental animals. Each concentration of neutrophil showed .04-.62 unit activity of MPO. Therefore, the 6 unit activity of MPO per neutrophil was unit. On the 7th and 10th post operative day, non treated tissues demonstrated increased MPO activity as compared to that of normal tissue. These data indicated that the inflammatory reaction of tissue was induced after wound induction and the MPO activity were increased in the inflammed tissues. While both 3 mW or 6 mW intensity of laser treatments did not affect the tissue MPO activity, 10 mW intensity of laser treatment significantly decreased the tissue MPO activity on the 7th and 10th post operative day. These data demonstrated that only 10 mW intensity of laser treatment successfully suppressed tissue inflammatory reaction after wound induction. In conclusion, these findings suggested that 10 mW of GaAIAs laser treatments effectively suppressed the inflammatory reaction of tissue that was induced during the wound healing process.
A low frequency, high power hydroacoustic transducer with 7 tonpilz piston elements assembled in a circular array suitable for marine application, such as the transmission of underwater information and the development of new fisheries resources in the deep sea zone was designed. A modified Mason's model was applied to monitor and to simulate the transducer behavior at each step during the fabrication. The in air, and in water constructed tonpilz transducer was tested experimentally and numerically by changing the size and the type of the material for head, tail and acoustic window. Also, the developed transducer was excited by pulse signals and the received waveform was analyzed. The resonance peaks in the transmitting voltage response(TVR) of a single tonpilz element without housing were observed at 11.33kHz in air and 10.93kHz in air and 10.93 kHz in water, respectively, with the overall electrical-acoustic efficiency of 43.7%. The value of TVR of single tonpilz element with aluminum housing in water was 129.87dB re 1 μPa/V at 12.25 kHz with the frequency bandwith of 2.15 kHz and half beam angle of 30.2˚at -3dB.The resonance peaks in the transmitting voltage response of the 7 element circular transducer were observed at 11.50 kHz in air and 11.45 kHz in water, respectively. The value of TVR in water 144.84 dB re 1μPa/V at 11.5kHz with the frequency bandwith of 4.25 kHz and the half beam angle of 22.3˚ at -3dB.Reasonable agreement between the experimental measurements and the theoretical predictions for the directivity patterns, TVRs and the impedance characteristics of the designed transducer was achieved.
The purpose of this study was to assess the fatigue in lumbar and abdominal muscles in patients with chronic low back pain compared with normal subjects using spectral analysis with mean power frequency and median power frequency. The experimental group consisted of twenty subjects who had experienced chronic low back pain for over one year after the onset day. A control group consisted of twenty normal subjects with no history of low back pain. All subjects stood in an apparatus to perform sustained contraction in the lumbar and abdominal muscles for 30 seconds with 60% maximal voluntary isometric contraction (MVIC). The resulting electromyographic (EMG) recorded time serial data were transformed into frequency serial data by Fast Fourier Transformation (FFT). The results were as follows: 1) lumbar muscles measured, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group group (p<0.05). In measured two abdominal muscles (inferior rectus abdominis, obliquus externus abdominis) except superior rectus abdominis, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group (p<0.05). 2) In all three (longissimus thoracis, iliocostalis lumborum, multifidus) lumbar muscles measured, the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). In the two (inferior rectus abdominis, obliquus externus abdominis) abdominal muscles measured (superior rectus abdominis not included), the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). These results suggest that in patients with chronic low back pain there is a trend for more fatigue to occur in both lumbar and abdominal muscles than in the normal control group. This would seem to suggest that in treatment programs for patients with chronic low back pain, improvement of endurance in all trunk muscles should be considered.
대형 건축물의 진동과 같은 초저주파 진동특성의 해석을 수행하기 위해서는 측정대상 및 측정조건, 그리고 목적으로 하는 측정요소에 적합한 측정시스템이 구축되어야 하며, 구축된 측정시스템으로부터 얻어진 극히 제한된 유한량의 데이터로부터 목적하는 특성요소를 추출하기 위한 정밀한 데이터분석기술이 요구된다. 따라서, 본 연구에서는 고신뢰성을 저주파진동 특성의 분석을 위한 효과적인 데이터처리기법의 개발을 목표로, 측정조건에 따른 저주파진동 해석의 문제점을 분석하고, FFT법과 MEM법의 저주파응답 특성을 비교하였으며, 비교결과를 토대로 저주파진동 해석에 적합한 알고리즘을 결정하였다. 또한, 결정된 분석 알고리즘의 성능을 명확히 하여 정밀분석을 위한 측정데이터의 최적조건을 제시하였다.
We propose to use the entropy of power spectra defined in the frequency domain for the deconvolution of extended images. Spatial correlations requisite for extended sources may be insured by increasing the role of power entropy because the power is just a representation of spatial correlations in the frequency domain. We have derived a semi-analytical solution which is found to severely reduce computing time compared with other iteration schemes. Even though the solution is very similar to the well-known Wiener filter, the regularizingng term in the new expression is so insensitive to the noise characteristics as to assure a stable solution. Applications have been made to the IRAS 60μm and 100 μm images of the dark cloud B34 and the optical CCD image of a solar active region containing a circular sunspot and a small pore.
원자력발전소에 지진격리장치를 설치하면 지진에 의한 하중을 지진격리장치가 담당하면서 설치 전보다 큰 변위가 발생하게 될 것으로 예상되며, 변위증가에 따라 일부 설비의 지진리스크가 증가될 가능성이 있다. 특히 지진격리된 구조물과 일반 구조물을 연결하는 설비인 배관 시스템의 경우 지진리스크가 크게 증가될 것으로 예상된다. 본 연구에서는 원자력발전소 배관 시스템의 취약부위인 강재 배관 Tee의 한계상태를 누수로 정의하고 면내반복가력시험을 수행하였다. 강재 배관 Tee의 모멘트와 변형각은 기존의 센서를 이용한 계측이 어려우므로 이미지 신호를 이용하여 측정하였다. 본 연구에서는 3인치 강재 배관 Tee의 모멘트와 변형각의 관계를 이용한 누수 선도 및 저주기 피로 곡선들을 제시하였다.
To achieve energy efficiency improvement is used to lower temperature for emission gas at catalyst inlet, or to reduce/stop using steam to reheat emission gas. Saved energy from this process can be used as power source in order to increase generation efficiency. Dry emission gas treatment, on the other hand, is the technology to increase generation efficiency by using highly efficient desalination materials including highly-responsive slaked lime and sodium type chemicals in order to comply with air pollution standards and reduce used steam volume for reheating emission gas. If dry emission gas is available, reheating is possible only with the temperature of 45℃ in order to expect generation efficiency by reducing steam volume for reheating. Retention energy of emission gas from combustion is calculated by emission gas multiplied by specific heat and temperature. In order to obtain more heat recovery from combustion emission gas, it is necessary to reduce not only exothermic loss from boiler facilities but emission calorie of emission gas coming out of boiler facilities. In order to reduce emission calorie of emission gas, it is efficient to realize temperature lowering for the emission gas temperature from the exit of heat recovery facility and reduce emission gas volume. When applying low temperature catalysts, the energy saving features from 0.03% to 2.52% (average 1.28%). When increasing the excess air ratio to 2.0, generation efficiency decreases by 0.41%. When the inlet temperature of the catalyst bed was changed from 210℃ to 180℃, greenhouse gas reduction results were 47.4, 94.8, 118.5, 142.2 thousand tons-CO2/y, CH4 was calculated to be 550.0, 1100.1, 1375.1, 1650.1 kg-CH4/y, and N2O was 275.0, 550.0, 687.6, 825.1 kg-N2O/y. In the case of high efficiency dry flue gas treatment, reduction of greenhouse gases by the change of temperature 120~160℃ and exhaust gas 5,000 ~ 6,500 ㎥/ton is possible with a minimum of 355,461 ton/y of CO2 and minimum 4,125 tons of CH4/y to a maximum of 6,325 ton/y and N2O to a minimum of 2,045 kg/y to a maximum of 3,135 kg/y.
WtE of MSW plays a crucial role in renewable energy production in Korea. Municipal solid waste (MSW) is an important energy resource for combined heat and power (CHP) production. This study investigated an increasing method to the power generation efficiency by MSW to energy (WtE) plants in South Korea and discussed the issues related to energy efficiency improvement. To achieve energy efficiency improvement is used to lower temperature for emission gas at catalyst inlet, or to reduce/stop using steam to reheat emission gas. Saved energy from this process can be used as power source in order to increase generation efficiency. It is possible to increase denitrification efficiency by maintaining the temperature of emission gas for catalyst denitrification. The temperature of emission gas of which moisture is increased to saturation point (relative humidity of 100%) at the exit of wet scrubber is between 50 and 60℃. This means there should be reheating of emission gas with the approximate temperature of 150℃. Dry emission gas treatment, on the other hand, is the technology to increase generation efficiency by using highly efficient desalination materials including highly-responsive slaked lime and sodium type chemicals in order to comply with air pollution standards and reduce used steam volume for reheating emission gas. If dry emission gas is available, reheating is possible only with the temperature of 45℃ in order to expect generation efficiency by reducing steam volume for reheating.