본 실험은 마이크로웨이브 처리가 상추 유묘의 생육 변화와 이차대사산물 함량의 변화를 알아보고자 수행되었다. 파종 후 3주째 상추 유묘에 2.45GHz 주파수와 200W의 마이크로 웨이브를 0, 4, 8 및 12초 동안 처리하고, 4주간 식물공장에서 재배한 후 생육 및 성분 분석을 수행하였다. 지하부와 지상부 의 생체중과 건물중, 엽면적, 엽장 및 엽수는 마이크로웨이브 처리시간이 증가할수록 감소하였다. 4초 처리구와 비교하여 12초 처리구에서 chlorophyll a, chlorophyll b 및 총 carotenoids 의 함량이 증가되었으며 총 페놀 함량은 감소하였다. 무처리 구와 비교하여 8초 처리구에서 총 플라보노이드 함량이 감소 하였다. 이러한 결과들은 산화적 스트레스에 의해 이차대사 산물 함량이 변화된 것으로 사료된다. 총 플라보노이드 함량 을 제외한 이차대사산물 함량은 각 처리구에서 무처리구와 비 교하여 유의한 차이가 없었지만, 각 처리구 사이의 유의한 차 이는 200W와 2.45GHz의 마이크로웨이브 처리가 4주 후 상 추의 이차대사산물 함량에 영향을 줄 수 있다는 것을 시사한다.
본 연구는 농산물 중 2019년 기준신설 예정농약 Broflanilide에 대한 공정시험법을 개발하고자 수행하였다. Broflanilide는 meta-diamide계 살충제로 중추신경계 억제성 신경전달물질인 gamma-aminobutyric acid (GABA) 수용 가이드라인(2016)’에 적합한 수준임을 확인하였다. 개발된 시험법은 낮은 검출한계 및 정량한계, 우수한 직선성, 회수율 실험을 통한 정확성과 정밀성, 재현성 등이 입증되 어 농산물 중 broflanilide의 잔류검사를 위한 공정시험법 으로 활용되기에 적합한 것으로 판단된다.
중금속이 곤충에 미치는 영향을 조사하기 위하여 빨간집모기 (Culex pipiens pallens) 금속용액 (Cu, Cd, Hg, Pb, Zn)에서 사육한 후 50% 치사농도 (LC50) 용화시기, 총 지질함량, 지질조성, 총 단백질 함량변화를 측정하였다. 50% 치사농도 (LC50)는 3령 유충으로 24시간 처리한 Hg 처리군에서 0.45 mg kg-1으로 나타나 다른 금속에 비해 독성이 강한 것으로 나타났고, 용화 시기는 처리군이 대조군 (129시간)에 비해 지연되었으며 Cd가 처리군 중 273시간으로 가장 늦게 용화되었다. 중금속에 노출된 모기시료에서 총 여섯 종류의 지질 band가 분리되었으며, 이 중 5종의 지질이 동정되었다 (phospholipid, cholesterol, fatty acid, triglyceride, cholesterol ester). 모든 처리군의 총 지질함량은 대조군에 비해 감소하였다. 또한, 대조군의 단백질 함량 (0.51 mg ind.-1)이 처리군의 단백질 함량에 비해 높게 나타났으며, 처리군 중 Hg과 Cd을 처리한 유충의 단백질 함량이 매우 낮게 나타났다. 결론적으로 중금속이 처리된 용액에서 사육된 모기유충은 오염된 환경에 의한 먹이섭취의 장애 및 중금속의 독성으로 인해 단백질 함량과 지질의 감소가 일어나 발육이 느려지고 용화시기가 길어지는 것으로 생각되며 이는 중금속에 의한 체내 물질대사의 변화를 의미한다. 이러한 결과는 중금속 오염이 모기의 생존과 성장을 억제시켜 모기 개체군 크기에 영향을 줄 것을 나타내며, 추후 연구를 통해 모기의 생육정도를 이용한 오염도 측정에 활용이 가능할 것으로 기대된다
We investigated the detoxification strategies of Helicoverpa armigera and Heliothis virescens, which allow them to feed successfully on cotton plants that produce toxic gossypol as a chemical defense compound. First, we tested CYP6AE14, a proposed candidate enzyme for gossypol detoxification, for its ability to detoxify gossypol. In incubation assays with gossypol and heterologously expressed CYP6AE14 no metabolites were detected. Our data show that CYP6AE14 is not directly involved in gossypol metabolism, at least under the assay conditions tested, but rather takes part in the general stress response of the herbivores to plant toxins. Second, we discovered that H. armigera and H. virescens excrete a large proportion (50%) of unmetabolized gossypol in the feces, but additionally metabolize gossypol by glycosylation. Analysis of larval feces revealed three monoglycosylated and up to five diglycosylated gossypol isomers when larvae fed on gossypol-supplemented diet. Based on their expression patterns we selected H. armigera candidate UGT genes and functionally expressed the respective proteins in insect cells. In enzymatic assays, we showed that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to a diglycosylated gossypol isomer that is characteristic for H. armigera and is absent in H. virescens feces. We offer novel insights into the detoxification mechanism of the plant defensive toxin, gossypol, by two generalist herbivores.
Animals must maintain proper balance between energy intake and expenditure. Recently, we descovered the enzymaticco-factor tetrahydrobiopterin (BH4) inhibits feeding in Drosophila. BH4 biosynthesis requires the sequential action of theconserved enzymes Punch, Purple, and Sepiapterin Reductase (Sptr). Although we observe increased feeding upon lossof Punch and Purple in the adult fat body, loss of Sptr must occur in the brain. We found Sptr expression is requiredin four adult brain neurons that express NPF, the fly homologue of the vertebrate appetite regulator NPY. Mechanistically,we found BH4 deficiency reduces NPF levels, while excess BH4 increases NPF accumulation without altering its expression.
Isaria farinosa (Hypocreales, Ascomycota) is a cosmopolitan entomopathogenic fungus affecting a wide range of arthropod hosts. It has mainly been studied as a insecticidal agent to control the agricultural pests. To investigate the useful secondary metabolite(SM) genes in Isaria farinosa C1012 strain, de novo assembly and genome mining were carried out. A whole genome sequencing with PacBio RSII system generated NGS reads greater than 4Gb, which were assembled into 16 contigs using FALCON program. The total size of genome was 33.36Mb. The N50 and N90 were 6,686,213 and 1,912,865bp, respectively. The assembled genome data was analyzed with antiSMASH3 program with a default setting to localize the gene region responsible for synthesizing SMs, such as non-ribosomal peptide synthetases (NRPS) and polyketide synthase (PKS). In this study, we predicted 16 NRPS, 13 PKS, and 9 PKS-NRPS hybrid gene clusters in I. farinosa genome.
Kunrak, a type of Korea traditional cheese, is made using Tarak, a yogurt produced with makgeolli as the fermentation source. Kunrak is produced by removing whey from Tarak, followed by drying process for safe storage and consumption over a longer period. In this study, we produced kunrak based on the method described in「Imwonsibyukji」. Prepared Kunrak was ripening for 96 hours at 20, 30, and 40oC. In order to study characteristics of Kunrak, physiochemical properties (pH, acidity, water contents) and contents of metabolites (organic acids, sugars, amino acids, and fatty acids) were analyzed. During ripening, water contents decreased. The main organic acids in Kunrak were citric acid and lactic acid, and the main free sugar was lactose. Main amino acids were glutamate and phenylalanine, and main fatty acid was saturated capric acid. At later ripening, all metabolites increased immediately after preparation. The sensory evaluation score of overall preference was highest for Kunrak, which was ripening at 40oC for 96 hours. This study was aimed to assay metabolites of Kunrak under various ripening conditions. The results provide basic data to produce conditions for standardized manufacturing of Kunrak.
Broccoli, one of Brassica vegetables, has been known to possess various health beneficial activities including anti-inflammation, anti-oxidation and anti-cancer etc. Various metabolites were indicated as active compounds in broccoli. Glucosinolates such as glucoraphanin, glucobrassicin, glucoerucin and isothiocyanates, i.e. sulforaphane, which is produced through the enzymatic action of myrosinase are getting focus as their bioactivities. In this study, we treated broccoli with pulsed electric field (PEF) processing and the metabolite profiles were investigated based on the metabolomics analysis. PEF process was applied to stem and floret of broccolis with three different levels; 500, 1000, 1500 pulses with 2 kV/cm, then metabolites were extracted with 70% methanol. Metabolomic analysis was carried out with mass spectrometry through multivariate statistical analysis based on the OPLS-DA model. Significant changes of metabolite profiles were observed by PEF treatment and specific metabolites were affected as dose dependent manner. Content of major glucosinolates compounds such as glucoerucin, glucoiberin, glucoraphanin, glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin were significantly reduced, while sulforaphane was distinctively increased in PEF treated broccolis. The results implied that myrosinase released from vacuole by PEF processing transformed glucosinolate into isothiocyanate, which would be useful findings for enhancing bioactivity of broccoli by simple PEF treatment.
To determine whether S-(-)-10,11-dihydroxyfarnesic acid methyl ester (DHFAME) produced by Beauveria bassiana CS1029 potentially causes acute skin irritation as a cosmetic ingredient, a skin toxicity test was conducted as recommended for compliance with Korea Food and Drug Administration regulations. New Zealand White rabbits were treated with 100 mg/dose of DHFAME according to standard guidelines. No significant skin lesions or inflammation was observed in the DHFAME-treated group. Furthermore, DHFAME did not appear to cause skin irritation, as assessed by clinical observation of the rabbits. Thus, when taken together, the present results suggest that DHFAME is a promising potential cosmetic ingredient that does not irritate the skin.
This research was investigated the relationship, in high-producing Holstein donor cows, between the number of the transferable embryos and the blood serum concentrations of Blood Urea Nitrogen (BUN), glucose and cholesterol, which affect the nutritional state of cows. CIDRs were inserted into the vaginas of twenty two heads of Holstein cows, regardless of estrous cycle. Superovulation was induced using folliclar stimulating hormone (FSH). For artificial insemination, donor cows were injected with and estrus was checked about 48 hours after the injection. Then they were treated with 4 straws of semen 3 times, with 12-hour intervals. Embryos were collected by a non-surgical method 7 days after the first artificial insemination. The total numbers of ova collected from 3 experimental groups whose blood BUN concentrations were <10 mg/dl, 11~18 mg/dl and mg/dl were 8.9, 12.5 and 19.0, respectively; whereas the numbers of transferable embryos were 5.8 + 1.9, 7.9 + 2.8 and 5.2 + 1.4, respectively. When glucose concentration was <60 mg/dl, the total number of collected ova was 9.9, which was smaller than when the concentration was 60~70 mg/dl or mg/dl. When glucose concentration was 60~70 mg/dl, the number of transferable embryos was 7.1 + 2.4, which was slightly larger than the numbers 6.4 + 2.1 and 6.1 + 1.7 that were obtained when the concentrations were <60 mg/dl and mg/dl, respectively ; however, the differences were not significant (p>0.05). When cholesterol concentrations were <150 mg/dl, 150~200 mg/dl and mg/dl, the total numbers of collected ova were 11.2, 11.3 and 8.6, respectively. Whereas the numbers of transferable embryos were 7.1 + 2.1, 7.3 + 1.9 and 5.6 + 1.3, respectively ; however, the differences were again not significant (p>0.05). The result of this research showed no significant difference in ovum recovery rate and the number of transferable embryos according to major metabolite concentrations in high-producing Holstein donor cows. However, it is considered that the failure of maintaining proper nutritional status would cause the fall in in vivo embryo productivity.
To study on antioxidant effects in the liver of 40-week-old mouse, the sample were orally pretreated 5mg/kg/day for 5 days with red ginseng saponin components(total saponin, protopanaxadiol saponin, protopanaxatriol saponin, ginsenoside-Rd, ginsenoside-Re, compound-K) for 5 days. The ability of saponin to protect the mouse liver from oxidative damage was examined by determining the activity of superoxide dismutase(SOD), glutathione peroxidase(GPx) and the contents of glutathione, the level of malondialdehyde, The only protopanaxadiol among the ginseng saponin fractions was significantly increased the hepatic SOD activity(p<0.01). The red ginseng saponin induced a slight increase of GPx activity, especially ginsenoside Rd, compound K and protopanaxatriol treatments significantly increased its activity. The content of glutathione was significantly increased by total saponin, protopanaxadiol and ginsenoside Rd(p<0.01), but the oxidized glutathione level was lowered in all the red ginseng saponin. Finally, the level of malondialdehyde was significantly decreased by ginsenoside Rd and protopanaxadiol. In conclusion, protopanaxadiol and ginsenoside Rd among the saponin fraction were especially increased in the activity of hepatic antioxidative enzyme and decreased the lipid peroxidation that was expressed in term of MDA formation. This comprehensive antioxidant effects of red ginseng saponin seems to be by a certain action of saponin other than a direct antioxidant action.
흰쥐를 이용하여 profenofos를 경구투여 및 피부도포 후 뇨 중 대사물질과 뇨 중 대사물질의 시간별 배설량을 GC/MS로 측정한 결과는 다음과 같다. Profenofos를 경구투여 후 뇨 중 대사물질은 4-bromo-2-chlorophenol이며, GC/MS로 분석한 결과 4-bromo-2-chlorophenol는 m/z=208에서 분자이온을 추정하였다. Profenofos를 피부도포 후 뇨 중 대사물질은 경구투여와 동일한 대사물질인 4-bromo-2-chlorophenol이었다. 모 화합물이나 4-bromo-2-chlorophenol외 다른 대사물질은 검출되지 않았다. Profenofos를 경구투여 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었다. 또한 48시간 내 95%가 배설되었고 72시간 이후는 대사물질이 배설되지 않았다. 한편 profenofos를 피부도포 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었으며, 48시간 내 87%가 배설되었고 96시간 이후는 대사물질이 배설되지 않았다. Profenofos의 뇨 중 대사물질인 4-bromo-2-chlorophenol는 profenofos의 생체모니터링 지표물질로서 사용될 수 있을 것이라고 생각되며, 뇨 중 4-bromo-2-chlorophenol의 시간별 배설량을 측정한 결과 경구투여보다 피부도포 후 배설이 지연된다는 것을 알 수 있었다.