최근 원자력 지진 PSA(Probabilistic Safety Assessment)를 토대로 산업시설물의 지진 PSA를 수행하는 연구가 진행되었다. 해당 연 구는 원자력 발전소와 산업시설물의 차이를 파악하고, 최종적으로 운영정지를 목표로 하는 고장수목(Fault Tree)를 구축한 후 시각적 확률도구인 베이지안 네트워크(Bayesian Network, BN)으로 변환하였다. 본 연구는 선행연구를 기반으로 지진으로 유발된 구조손상 으로 인해 발생 가능한 화재・폭발에 대해 PSA를 수행하고자 하였다. 이를 위해 화재・폭발을 사건수목(Event Tree)으로 표현하고, BN 으로 변환하였다. 변환된 BN은 화재・폭발 모듈로서 선행연구에서 제시된 고장수목 기반 BN과 연계되어 최종적으로 지진 유발 화재・ 폭발 PSA를 수행할 수 있는 BN 기반 방법론이 개발되었다. 개발된 BN을 검증하기위해 수치예제로서 가상의 가스플랜트 Plot Plan을 생성하였고, 가스플랜트의 설비 종류가 구체적으로 반영된 대규모 BN을 구축하였다. 해당 BN을 이용하여 지진 규모에 따른 전체시 스템의 운영정지 확률 및 하위시스템들의 고장확률 산정과 더불어 역으로 전체시스템이 운영 정지되었을 때 하위시스템들의 영향도 분석과 화재・폭발 가능성을 산정하여 다양한 의사결정을 수행할 수 있음을 제시함으로써 그 우수성을 확인하였다.
This paper reports an enhanced strategy for improving the mechanical flexibility and ionic kinetic properties of a double network hydrogel based on Co2+- coordination assistance. The modified double-network hydrogel was obtained by using acrylic acid and N, N-dimethylacrylamide as monomers, adding cross-linking agents and 3D nitrogen-doped graphenes. The tensile fracture rate of the modified hydrogel was 1925% and its tensile strength was 1696 kPa. In addition, the hydrogel exhibited excellent ionic dynamics, and its application to an all-solid-state supercapacitor was able to achieve a specific capacitance of up to 182.8 F g− 1. The supercapacitor exhibited an energy density of 34.2 Wh kg− 1, even when operating at a power density of 5 kW kg− 1, highlighting its significant potential for practical applications.
This study quantitatively analyzes the inter-sectoral linkages of emerging security based on the network of Sustainable Development Goals (SDGs) in North Korea's Voluntary National Review Report (VNR) using Social Network Analysis (SNA). As a result of the analysis, North Korea's overall linkage score for each emerging security sector was high in the following order: health security (7.8), environmental security (5.9), food security (5.4), and energy security (4.0). This refers to the degree of interconnectivity with other security sectors. The ranking of security with high connectivity by the emerging security sector is as follows. Food security was in the order of environment > health > energy security, health security was in the order of environment > food security, energy security was in the order of health > environment > food security, and environmental security was highly connected in the order of health > energy > food security. This quantitative analysis indicates the importance of emerging security sectors and the need for mutual linkage in North Korea's SDGs implementation strategy. This will help set priorities for future cooperation in emerging security areas between North and South Korea and seeking organic linkage plans for each security sector.
본 연구에서는 빅데이터를 통해 교사의 융합교육역량에 대한 사회적 인식을 살펴봄으로써 교사의 융합 교육역량 증진 방안 마련을 위한 기초자료를 제공하는데 목적이 있었다. 본 연구목적을 달성하기 위해 Textom에서 제공하는 빅데이터를 활용하여 교사 + 융합교육 + 역량을 키워드로 rawDATA를 수집하였 다. 수집된 데이터는 1차2차 정제과정을 마친 데이터들 중 빈도분석 결과를 바탕으로 200개 핵심 키워드 를 선정하였으며, 이를 1-모드 매트릭스 데이터 셋으로 변환하여 키워드 네트워크 분석을 실시하였다. 연 구결과는 다음과 같다: 첫째, 빈도분석에서는 교육, 인공지능, 강화, 연수, 수업이 가장 빈번하게 출현하는 것으로 나타났다. 둘째, 전체 네트워크 분석에서는 교육, 학생, 연수, 강화, 대상이 모든 중심성에서 높게 나타났다. 셋째, 에고 네트워크 분석에서는 교사, 융합교육, 역량을 중심으로 다양하게 논의되고 있음을 확 인할 수 있었다. 이러한 결과를 바탕으로 교사의 융합교육역량과 관련된 후속연구 및 증진방안에 대해 제 언하였다.
Effects-Based Operations (EBO) refers to a process for achieving strategic goals by focusing on effects rather than attrition-based destruction. For a successful implementation of EBO, identifying key nodes in an adversary network is crucial in the process of EBO. In this study, we suggest a network-based approach that combines network centrality and optimization to select the most influential nodes. First, we analyze the adversary’s network structure to identify the node influence using degree and betweenness centrality. Degree centrality refers to the extent of direct links of a node to other nodes, and betweenness centrality refers to the extent to which a node lies between the paths connecting other nodes of a network together. Based on the centrality results, we then suggest an optimization model in which we minimize the sum of the main effects of the adversary by identifying the most influential nodes under the dynamic nature of the adversary network structure. Our results show that key node identification based on our optimization model outperforms simple centrality-based node identification in terms of decreasing the entire network value. We expect that these results can provide insight not only to military field for selecting key targets, but also to other multidisciplinary areas in identifying key nodes when they are interacting to each other in a network.
이 연구는 위성사진을 활용하여 건설지점의 기대풍속을 예측하기 위한 인공신경망 방법론을 제안한다. 제안된 방법은 기존 의 엔지니어의 판단을 대체하여, Auto-Encoder를 사용해 지형적 특성을 정량화하고, 이를 바탕으로 대상지점과 유사한 지역의 관측소 풍속 데이터를 선형 조합해 기대 풍속을 예측한다. 또한, 머신러닝과 인공신경망을 활용한 종단간 풍속 예측 모델을 제안하고, 성능을 비교 분석하였다. 그 결과 관측소의 풍속 데이터의 선형 조합보다는 종단간 모델을 구성하는 방법이 더 높은 정확도를 보였으며, 특히 Graph Neural Network (GNN)이 Multi-Layer Perceptron (MLP)에 비해 상당히 우수한 예측 성능을 나타내었다.
Conducting a TSPA (Total System Performance Assessment) of the entire spent nuclear fuel disposal system, which includes thousands of disposal holes and their geological surroundings over many thousands of years, is a challenging task. Typically, the TSPA relies on significant efforts involving numerous parts and finite elements, making it computationally demanding. To streamline this process and enhance efficiency, our study introduces a surrogate model built upon the widely recognized U-network machine learning framework. This surrogate model serves as a bridge, correcting the results from a detailed numerical model with a large number of small-sized elements into a simplified one with fewer and large-sized elements. This approach will significantly cut down on computation time while preserving accuracy comparable to those achieved through the detailed numerical model.
원자력발전소 지진 확률론적 안전성 평가인 PSA(Probabilistic Safety Assessment)는 오랜 기간에 걸쳐 확고히 구축되어 왔다. 반면 에 다양한 공정 기반의 산업시설물의 경우 화재, 폭발, 확산(유출) 재난에 대해 주로 연구되어 왔으며, 지진에 대해서는 상대적으로 연 구가 미미하였다. 하지만, 플랜트 설계 당시와 달리 해당 부지가 지진 영향권에 들어갈 경우 지진 PSA 수행은 필수적이다. 지진 PSA 를 수행하기 위해서는 확률론적 지진 재해도 해석(Probabilistic Seismic Hazard Analysis), 사건수목 해석(Event Tree Analysis), 고장수 목 해석(Fault Tree Analysis), 취약도 곡선 등을 필요로 한다. 원자력 발전소의 경우 노심 손상 방지라는 최우선 목표에 따라 많은 사고 시나리오 분석을 통해 사건수목이 구축되었지만, 산업시설물의 경우 공정의 다양성과 최우선 손상 방지 핵심설비의 부재로 인해 일 반적인 사건수목 구축이 어렵다. 따라서, 본 연구에서는 산업시설물 지진 PSA를 수행하기 위해 고장수목을 바탕으로 확률론적 시각 도구인 베이지안 네트워크(Bayesian Network, BN)로 변환하여 리스크를 평가하는 방법을 제안한다. 제안된 방법을 이용하여 임의로 생성된 가스플랜트 Plot Plan에 대해 최종 BN을 구축하고, 다양한 사건 경우에 대한 효용성있는 의사결정과정을 보임으로써 그 우수 성을 확인하였다.
본 논문에서는 3차원 엮임 재료의 재료 물성치들을 효율적으로 분석하고 추후 최적설계 연구에 활용하기 위해서 파라메트릭 배치 해석 워크플로우를 제시하였다. 3차원 엮임 재료를 구성하는 와이어들 사이의 간격을 설계 매개변수로 하는 파라메트릭 모델에 대해 서 임의의 변수 조합을 가지는 2,500개의 수치 모델을 생성하였으며, 상용 프로그램인 매트랩과 앤시스의 여러 모듈을 사용하여 체적 탄성계수, 열전도도, 유체투과율과 같은 다양한 재료 물성치들을 배치 해석을 통해서 자동으로 얻어질 수 있도록 구성하였다. 이와 같 이 얻어진 대용량의 재료 물성치 데이터베이스를 활용해서 회귀 분석을 수행하였으며, 그 결과 설계 변수들과 재료 물성치 사이의 경 향성과 수치 해석 결과의 정확도를 검증하였다. 또한 확보된 데이터베이스를 통해서 3차원 엮임 재료의 물성치를 예측할 수 있는 인 공 신경망을 구성하고 학습시켰으며, 그 결과 임의의 설계 매개변수 값들을 가지는 엮임 재료 모델에 대해서 구조 및 유체해석 과정 없 이도 높은 정확도로 재료 물성치들을 추정할 수 있음을 확인하였다.
본 논문에서는 볼트로 체결된 구조체에 대하여 초기 볼트풀림 상태에서의 볼트 체결력 예측 합성곱 신경망 훈련 방법을 제시한다. 8개의 볼트의 체결력이 변경된 상태에서 계산한 주파수응답들을 완전 체결된 상태의 초기 모델과의 크기 및 모양 유사성을 표현하는 유사성 지도로 생성한다. 주파수응답 데이터들의 생성에는 크리로프 부공간법 기반의 모델차수축소법을 적용하여 효율적인 방법으 로 수행할 수 있도록 한다. 합성곱 신경망 모델은 회귀 출력 계층을 사용하여 볼트의 체결력을 예측하도록 하였으며, 훈련 데이터의 개 수와 합성곱 신경망 계층의 개수를 다르게 준비하여 훈련시킨 네트워크들을 비교하여 그 성능을 평가하였다. 주파수응답에서 파생되 는 유사성 지도를 입력 데이터로 사용하여 초기 볼트풀림 영역에서 볼트 체결력의 진단 가능성과 유효성을 제시하였다.
Ship collision accidents not only endanger the safety of ships and personnel, but also may cause serious marine environmental pollution. To solve this problem, advanced technologies have been developed and applied in the field of intelligent ships in recent years. In this paper, a novel path planning algorithm is proposed based on particle swarm optimization (PSO) to construct a decision-making system for ship's autonomous collision avoidance using the process analysis which combines with the ship encounter situation and the decision-making method based on ship collision avoidance responsibility. This algorithm is designed to avoid both static and dynamic obstacles by judging the collision risk considering bad weather conditions by using BP neural network. When the two ships enter a certain distance, the optimal collision avoidance course and speed of the ship are obtained through the improved collision avoidance decision-making method. Finally, through MATLAB and Visual C++ platform simulations, the results show that the ship collision avoidance decision-making scheme can obtain reasonable optimal collision avoidance speed and course, which can ensure the safety of ship path planning and reduce energy consumption.
VR 및 AR은 대중들이 접근하기 어려운 기술이 아닌, 개인용 스마트 폰 하나로 체험 및 활용 할 수 있는 시 대가 되었다. 최근 이런 개인용 스마트 폰의 다양한 센서를 활용한 AR 콘텐츠가 개발되고 서비스 되고 있다. AR 콘텐츠의 수요가 커지면서Software교육의 수요도 커지게 되었다. 하지만, 비전공자들도 배우기 쉬운 Python 언어를 중심으로 SW 교육이 활발해졌음에도, 아직까지 AR 콘텐츠 개발에서는 Python을 적극적으로 사용할 수 없다. AR 콘텐츠는 기술 분야 뿐 아니라 인터렉티브 아트 분야에서도 활발하게 사용되고 있다. 최근 인터 렉티브 아티스트들은 Python을 이용하여 인공지능을 활용한 작품을 개발 및 전시하고 있다. Python을 통한 SW 교육은 SW 분야의 취업에만 필요한 것이 아니라 아트 분야에서도 필요한 교육이 되었다. 본 논문에서는 AR 콘텐츠 개발 교육을 위한 Python과 Unity 3D Engine을 이용한 네트워크 기반 AR 프레임 워크를 제안한다. 제 안한 AR 프레임 워크는 Web 기반 브라우저에서 개인용 스마트 폰의 카메라에 접근하여 카메라 정보를 Main Server에 전송하고 Python에서 Mark를 분석한다. Mark 정보에 맞춰 Unity 3D Engine에서 3D 오브젝트를 렌더 링하고, 카메라 정보화 합성 후, MJPEG 스트리밍으로 개인용 스마트 폰 화면에 렌더링 된다. 본 논문에서 제 안한 AR 프레임 워크는 SW 교육 플랫폼과 비대면 교육 플랫폼의 요구사항을 반영하며, 인터렉티브 아티스트 들의 다양한 도전에 필요한 기술적 제한을 낮춰 줄 것으로 기대한다.
Quora search engine redirects to different discussion pages based on the search terms searched by the user. So, when questions that are semantically similar are searched on Quora, it sometimes redirects a user to different discussion pages even if there exists a page to the dedicated search. In such a case, Semantic Similarity among the questions carries highest weightage. So, for text, using traditional methods for calculating similarity, usually the text is considered as sequence of words and they just count the number of words that occurred in a sentence, on which some distance measures are applied to find the similarity, while missing the semantic level knowledge of the text during calculation. Considering such traditional methods, it will also require a huge training set as well as time to produce an accurate model. But in this Research Paper, Siamese Based Network is used that can train itself on a single example of each text to provide an accurate similarity output.I have used different types of pre-trained word embedding models like word-2-vec and glove to understand the semantics of the question pairs present in Quora Question Pair dataset. This paper introduces a new approach to calculate sentence similarity and gives astronishing results outperforming the current state of art Siamese Based LSTM models. Along with this new approach of using Manhattan LSTM with attention mechanism for similarity calculation, a comparative analysis is performed on the embedded question pairs, among different Siamese based LSTM models like LSTM and Manhattan LSTM, to predict whether the questions are similar or not and get the best model combination for Quora Question Pair.
The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.