검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to compare the efficiency of air and oxygen injected into the underwater non-thermal dielectric barrier discharge plasma (DBD plasma) device used to remove five types of antibiotics (tetracycline, doxycycline, oxytetracycline, clindamycin, and erythromycin) artificially contained in the fish farm discharge water. The voltage given to generate DBD plasma was 27.8 kV, and the measurement intervals were 0, 0.5, 1, 2, 4, 8, 16 and 32 minutes. Tetracycline antibiotics significantly decreased in 4 minutes when air was injected and were reduced in 30 seconds when oxygen was injected. After the introduction of air and oxygen at 32 minutes, 78.1% and 95.8% of tetracycline were removed, 77.1% and 96.3% of doxycycline were removed, and 77.1% and 95.5% of oxytetracycline were removed, respectively. In air and oxygen, 59.6% and 83.0% of clindamycin and 53.3% and 74.3% of erythromycin were removed, respectively. The two antibiotics showed lower removal efficiency than tetracyclines. In conclusion, fish farm discharge water contains five different types of antibiotics that can be reduced using underwater DBD plasma, and oxygen gas injection outperformed air in terms of removal efficiency.
        4,000원
        4.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen sulfide (H2S) emitted from various sources is a major odorous compound, and non-thermal plasma (NP) has emerged as a promising technique to eliminate H2S. This study was conducted to investigate lab-scale and pilot-scale NP reactors using corona discharge for the removal of H2S, and the effects of relative humidity, applied electrical power on reactor performance and ozone generation were determined. A gas stream containing H2S was injected to the lab-scale NP reactor, and the changes in H2S and ozone concentration were monitored. In the pilotscale NP experiment, the inlet concentration and flow rate were modified to determine the effect of relative humidity and applied power on the NP performance. In the lab-scale NP experiments, H2S removal was found to be the 1st-order reaction in the presence of ozone. On the other hand, when plasma reaction and ozone generation were initiated after H2S was introduced, the H2S oxidation followed the 0th-order kinetics. The ratio of indirect oxidation by ozone to the overall H2S removal was evaluated using two different experimental findings, indicating that approximately 70% of the overall H2S elimination was accounted for by the indirect oxidation. The pilotscale NP experiments showed that H2S introduced to the reactor was completely removed at low flow rates, and approximately 90% of H2S was eliminated at the gas flow rate of 15 m3/min. Furthermore, the elimination capacity of the pilot-scale NP was 3.4 g/m3·min for the removal of H2S at various inlet concentrations. Finally, the experimental results obtained from both the lab-scale and the pilot-scale reactor operations indicated that the H2S mass removal was proportional to the applied electrical power, and average H2S masses removed per unit electrical power were calculated to be 358 and 348 mg-H2S/kW in the lab-scale and the pilot-scale reactors, respectively. To optimize energy efficiency and prevent the generation of excessive ozone, an appropriate operating time of the NP reactor must be determined.
        4,000원
        5.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The metal plating industry produces a large amount of wastewater generally containing heavy metals with various chemical compounds; as such, treating the wastewater is both an environmental and an economic challenge. A vacuum evaporation system has been developed to effectively reduce the volume of plating wastewater. However, the gas stream discharged from the distillation unit of the evaporator is often contaminated with high concentrations of odorous compounds such as ammonia and dimethyl disulfide (DMDS). In this study, a non-thermal plasma process operated in wet conditions was applied to remove the odorous compounds, and it showed high removal efficiencies of greater than 99% for ammonia and 95% for DMDS. However, the gas flowrate more substantially affected the efficiency of ammonia removal than the efficiency of DMDS removal, because the higher the gas flowrate, the shorter the contact time between the odorous compound and the mist particles in the wet plasma reactor. The analyses of the maximum removal capacity indicated that the wet non-thermal plasma system was effective for treating the odorous compounds at a loading rate of less than 20 mg/m3/min even though the lowest amount of electrical power was applied. Therefore, the wet-type non-thermal plasma system is expected alleviate to effectively abate the odor problem of the vacuum evaporator used in the treatment of plating wastewater.
        4,000원
        6.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2010년 전국적으로 소, 돼지와 같은 동물에 구제역이 발병하였고, 이에 전국에 약 4,800여개의 매몰지가 긴급 조성되고 약 300만 마리의 동물들을 살처분 되었다. 이렇게 조성된 매몰지 내부에서는 가축사체가 부패하는 과정에서 황화수소, 메르캅탄류, 아민류 와 같은 악취물질이 생성되고, 매몰지 이설과정에서 대기 중으로 확산된다. 본 연구에서 는 가축 매몰지 이설과정 중에 발생하는 황 계열 물질을 저온 플라즈마 시스템을 적용하 여 저감하고자 하였다. 특히 플라즈마 시스템에서 상대습도에 따른 황화수소와 다이메틸 다이설파이드(DMDS) 제거량 변화를 실험적으로 확인하였다. 동일한 유입 조건에서 상대 습도가 증가함에 따라 황화수소와 DMDS의 제거율은 증가하였고, 이는 상대습도가 높아 지면서 발생하는 오존량이 증가하였기 때문이었다. 황화수소와 DMDS의 오존 반응식을 깁스 자유에너지로 비교해보면 DMDS의 오존 산화가 더 높은 에너지를 방출하는 것으로 나타나며, 이에 따라 황화수소보다는 DMDS가 먼저 오존에 의해 산화되며 남은 황화수 소는 촉매 층에서 추가 반응하는 것으로 판단된다.
        4,000원
        7.
        2018.05 서비스 종료(열람 제한)
        글로우 고압 방전 방식에 의한 저온 플라즈마(Non-thermal Plasma, NTP) 공정은 액상에서 광전자, 전자, OH-라디칼, 전자기 에너지 등 반응성이 높은 화학물질의 형성할 수 있다. 이 NTP는 공기를 carrier 가스로 활용하여 반응성이 높은 화학종을 생성하는데, 유기물을 효과적으로 산화시키는 고도산화공법의 일종이다. NTP의 강력한 산화력에도 불구하고, NTP 공정에서 발현되는 오염물질의 분해 메커니즘과 그 중간부산물 및 최종 생성물의 경로는 명확하게 밝혀지지 않아 연구가 필요한 실정이다. 본 연구는 폐수 내 다양한 오염물질이 어떠한 메커니즘으로 분해되는가를 실험적으로 규명하고, 2종(sulfamethazine sodium salt와 sulfathiazole sodium salt)의 sulfonamide 계열 항생제에 NTP 공정을 적용하여 제거성능과 분해경로를 검증한다. 또한, 대상 항생제의 분해가 폐수처리 과정에서의 분해 동역학 및 생태 독성과 어떻게 관련되는지를 확인하기 위해 주요 중간부산물 및 신규생성물의 fate를 확인한다. NTP 공정의 진보된 효과를 증명하기 위해 반응성 화학종인 과산화수소 (H2O2)의 순간 생성량을 정량하였으며, OH-라디칼 생성의 간접지표인 N-Dimethyl-4-Nitrosoaniline (RNO) 물질의 분해동역학적 성질을 바탕으로 분해속도계수를 산출하였다. H2O2의 농도는 초기 NTP 공정 적용 시 300 mg/L 까지 증가하였고, 1440 min 적용 시 약 12 mg/L로 감소하며 OH-라디칼 생성과 오염물질 분해에 관여하는 것을 확인하였다. 또한 RNO 물질은 일차함수 형태로 감소하며, 0.91/hr의 속도로 제거되었다. LC-MS/MS (6410 LC-ESI/MS/MS (QQQ), Agilent, USA) 분석을 통해 검출된 중간부산물과 신규생성물을 통해 분해경로를 확인하였다. 문헌과 실험결과의 비교는 NTP 공정이 OH-라디칼 발생 및 산화 환원제와 반응종의 상호 작용으로 인한 산화력 측면에서 다른 산화 공정보다 우수함을 보여준다. Daphnia magna를 이용한 생태독성(Toxicity Unit, TU) 결과는 폐수처리에 대한 NTP 공정 적용이 반응성 화학종의 생성촉진을 통해 독성의 저감에 기여함을 보여주며, 실험결과 TU 값은 초기 2.2 대비 24 hr 적용 후 0.8로 크게 감소하였고, 충분한 체류 시간이 핵심 설계요소임을 밝혔다. 궁극적으로 본 연구는 항생제의 효과적인 제어 및 부산물 관리방안에 대한 유용한 정보를 제공한다.