검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 150

        65.
        2015.10 구독 인증기관·개인회원 무료
        Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the first evidence that the Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as a clotting factor. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 exhibited anti-microbial activity against fungi and Gram-positive and Gram-negative bacteria. Taken together, our data demonstrated that AcSecapin-1 has a multifunctional role as an anti-fibrinolytic agent, an anti-elastolytic agent, and an anti-microbial peptide, and our data suggested novel functions for the biological actions of the bee venom peptide, secapin.
        66.
        2015.10 구독 인증기관·개인회원 무료
        The honeybee inhibitor cysteine knot (ICK) peptide acts as an antifungal peptide and insecticidal venom toxin. However, the ICK peptide from bumblebees has not been characterized. Here, we report the molecular cloning and antifungal activity of a bumblebee (Bombus ignitus) ICK peptide (BiICK). We identified a BiICK that contains an ICK fold. The BiICK was expressed in the epidermis, fat body, and venom gland of B. ignitus worker bees. A 6.7-kDa recombinant BiICK peptide was expressed in baculovirus-infected insect cells. Recombinant BiICK peptides directly bound to Beauveria bassiana, Ascosphaera apis, and Fusarium graminearum, but they did not bind to Escherichia coli, Paenibacillus larvae, or Bacillus thuringiensis. Consistent with this finding, BiICK exhibited antifungal activity against fungi. These results demonstrate that BiICK acts as an antifungal peptide.
        67.
        2014.12 구독 인증기관 무료, 개인회원 유료
        A positional scanning synthetic peptide combinatorial library (PS-SCL) was screened in order to identify antimicrobial peptides against the cariogenic oral bacteria, Streptococcus mutans. Activity against Streptococcus gordonii and Aggregatibacter actinomycetemcomitans was also examined. The library was comprised of six sub-libraries with the format O(1-6)XXXXX-NH2, where O represents one of 19 amino acids (excluding cysteine) and X represents equimolar mixture of these. Each sub-library was tested for antimicrobial activity against S. mutans and evaluated for antimicrobial activity against S. gordonii and A. actinomycetemcomitans. The effect of peptides was observed using transmission electron microscopy (TEM). Two semi-mixture peptides, RXXXXN-NH2 (pep-1) and WXXXXN-NH2 (pep-2), and one positioned peptide, RRRWRN-NH2 (pep-3), were identified. Pep-1 and pep-2 showed significant antimicrobial activity against Gram positive bacteria (S. mutans and S. gordonii), but not against Gram negative bacteria (A. actinomycetemcomitans). However, pep-3 showed very low antimicrobial activity against all three bacteria. Pep-3 did not form an amphiphilic α-helix, which is a required structure for most antimicrobial peptides. Pep-1 and pep-2 were able to disrupt the membrane of S. mutans. Small libraries of biochemically-constrained peptides can be used to generate antimicrobial peptides against S. mutans and other oral microbes. Peptides derived from such libraries may be candidate antimicrobial agents for the treatment of oral microorganisms.
        4,000원
        68.
        2014.10 구독 인증기관·개인회원 무료
        Like vertebrate insulins, insulin-like peptides (ILPs) play crucial roles in controlling immature growth, adult lifespan, and plasma sugar level in some insects. An ILP gene (SeILP1) was predicted from a transcription database of Spodoptera exigua. SeILP1 encodes 95 amino acid sequence, which shares sequence homologies (33~83%) with other insects ILPs. The predicted B and A chains possess six cysteine residences. SeILP1 was expressed in all developmental stages of S. exigua. However, its expression was detected in fat body, gut and epidermis, but not in hemocytes. Its expression increased with feeding activity. Plasma trehalose levels of fifth instar larvae maintained at relatively stable concentration of 2.31±0.62 mM. However, starvation induced a significant increase of plasma trehalose level by more than two fold in 48 h, at which SeILP1 expression kept at a low level. RNA interference of SeILP1 induced a significant increase of plasma trehalose level. Interestingly, a bovine insulin decreased plasma trehalose level in a dose-dependent manner. These results indicate mat SeILP1 plays a role in suppressing plasma trehalose level in S. exigua.
        69.
        2014.10 구독 인증기관·개인회원 무료
        Inhibitor cysteine knot (ICK) peptides exhibit ion channel blocking, insecticidal, and antimicrobial activities, but currently, no functional roles for bee-derived ICK peptides have been identified. In this study, a bee (Apis cerana) ICK peptide (AcICK) that acts as an antifungal peptide and as an insecticidal venom toxin was identified. AcICK contains an ICK fold that is expressed in the epidermis, fat body, or venom gland and is present as a 6.6-kDa peptide in bee venom. Recombinant AcICK peptide (expressed in baculovirus-infected insect cells) bound directly to Beauveria bassiana and Fusarium graminearum, but not to Escherichia coli or Bacillus thuringiensis. Consistent with these findings, AcICK showed antifungal activity, indicating that AcICK acts as an antifungal peptide. Furthermore, AcICK expression is induced in the fat body and epidermis after injection with B. bassiana. These results provide insight into the role of AcICK during the innate immune response following fungal infection. Additionally, we show that AcICK has insecticidal activity. Our results demonstrate a functional role for AcICK in bees: AcICK acts as an antifungal peptide in innate immune reactions in the body and as an insecticidal toxin in venom. The finding that the AcICK peptide functions with different mechanisms of action in the body and in venom highlights the two-pronged strategy that is possible with the bee ICK peptide.
        70.
        2014.10 구독 인증기관·개인회원 무료
        Biological properties of antimicrobial peptides (AMPs) of hemimetabolous insect are poorly characterized in innate immunity field. To investigate the biochemical properties of hemimetabolous insect’s AMPs, we purified the pyrrhocoricin-like AMP from the hemolymph of Riptortus pedestris and then named as riptocin. We successfully determined the primary protein structure and its cDNA sequence. Interestingly, the determined cDNA revealed that riptocin precursor is composed of 12 repeating units of active riptocins, which implied that riptocin precursor might require to be processed to generate active riptocins by several unidentified processing enzymes. In order to characterize the bio-processing mechanisms of riptocin precursor, we generated the antibody against active riptocin. Using quantitative PCR and Western blot analyses, we showed that gene of riptocin was started to express from the fatbody after three hours post bacterial infection. To address our hypothesis that active riptocin is generated from riptocin precursor by several processing enzymes, we need to obtain the riptocin precursor. Currently, we are expressing the recombinant riptocin precursor using in vitro translation system. Meanwhile, we investigated whether naive hemolymph (naive HL), which may contain precursor riptocin, can generate active riptocin when riptocin precursor was co-incubation with bacteria-challenged hemolymph (active HL), which may contain all processing enzymes. Actually, when naive HL was incubated with active HL, antimicrobial activity was dramatically increased, suggesting that processing enzymes in active HL may induce processing of riptocin precursor to generate active riptocins.
        71.
        2014.04 구독 인증기관·개인회원 무료
        This peptide has antibacterial activity against several Gram-positive and Gram-negative bacteria. BmCecB1 is antimicrobial peptides from Bombyx mori and belongs to cecropin family. Antimicrobial peptides are important components of the innate immune systems in all living organism. To produce the BmCecB1 antimicrobial peptide, we constructed transgenic silkworm that expressed BmCecB1 gene under the control BmA3 promoter using piggyBac vector. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. Mixtures of the donor vector and helper vector were micro-injected into 600 eggs of bivoltin silkworms, Baegokjam. In total, 49 larvae (G0) were hatched and allowed to develop into moths. The resulting G1 generation consisted of 22 broods, and we selected 2 broods containing at least 1 EGFP-positive embryo. The rate of successful transgenesis for the G1 broods was 11%. We identified 9 EGFP-positive G1 moths and these were backcrossed with wild-type moths. With the aim of identifying a BmCecB1 as antimicrobial peptide, we investigated the Radical diffusion Assay (RDA) and then demonstrated that BmCecB1 possesses high antibacterial activities against Gram-negative bacteria.
        72.
        2014.04 구독 인증기관·개인회원 무료
        Screening for antimicrobial peptide genes in the immune-induced Antheraea yamamai larvae led to the identification of a novel antifungal moricin-like peptide (MLP10) gene. The complete MLP10 cDNA is comprised of 403 bp with 174 bp open reading frame encoding a 58 amino acid precursor that contains a putative 23-residue signal peptide, a 2-residue propeptide and a 33-residue mature peptide. The deduced amino acid sequence of MLP10 has 26∼52% identity to those of moricin-related peptides from lepidopteran insects. The MLP10 was highly expressed in E. coli BL21(DE3) by fusing with ketosteroid isomerase (KSI) to avoid the cell death during induction. The resulting expressed KSI-MLP10 fusion protein was in a insoluble form. Recombinant MLP10 was released by cleavage of the fusion protein with cyanogen bromide (CNBr). Subsequently, we purified pure active MLP10 by FPLC chromatography, and 5.2mg of MLP10 was obtained from 1L culture medium. The purified MLP10 was prevented the growth of candida albicans at 6.25 uM, and was also active against gram negative and gram positive bacteria. This potent antimicrobial activity suggests that MLP10 may play a role in the immune response of A. yamamai.
        73.
        2014.04 구독 인증기관·개인회원 무료
        Insulin in vertebrates plays a crucial role in maintaining homeostasis of blood sugar level. Insulin-like peptide (ILP) has been identified in insects, such as Drosophila melanogaster and Aedes aegypti. Plasma sugars and polyols of the diamondback moth, Plutella xylostella were separated by a Bio-LC. Among seven peaks, trehalose was the most predominant blood sugar and maintained at approximately 3.5 mM in the larval plasma. However, the feeding activity affected the plasma trehalose level, in which starvation significantly up-regulated the trehalose level. Analysis of ILP expression upon feeding indicated that feeding stimulated the gene expression of ILP. Interestingly, an injection of a vertebrate insulin significantly suppressed the hypertrehalosemia induced by starvation. These results suggest that ILP is a endocrine signal to down-regulate the plasma trehalose level in P. xylostella.
        74.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bioactive peptides function effectively with a minimal amount compared to proteins. Recently SPARC related modular calcium binding 1 (SMOC1) has been implicated in regulating osteoblast differentiation and limb and eye development. In this study we synthesized a peptide covering 16 amino acids derived from the extracellular calcium binding (EC) domain of SMOC1, and its effects on proliferation and osteoblast differentiation of human bone marrow mesenchymal stem cells were examined. Treatment of SMOC1 peptide did not modulate proliferation of BMSCs. However, mineralization of BMSCs was significantly increased with a dose dependent manner. Consistently expression of osteoblast differentiation marker genes including type 1 collagen and osteocalcin was also dose dependently increased. Taken together, these results suggest that peptide derived from the EC domain of SMOC1 recapitulates at least partially osteogenic function of SMOC1.
        4,000원
        75.
        2013.12 구독 인증기관 무료, 개인회원 유료
        Antimicrobial peptides (AMPs) are an important component of innate defense mechanisms with broad-spectrum activities against various pathogenic microorganisms, including Gram-positive and Gram-negative bacteria, fungi, and viruses. Antibiotic resistance has become a pervasive and global health burden, resulting in the immediate need to develop a new class of antibiotic substances. We screened a 16-mer random peptide library using the yeast two-hybrid system with Beclin 1 as bait and found that two 16-mer peptides (named P4 and P30) appeared to interact with Beclin1 in the β-gal assay. The two candidate cDNAs were introduced into the yeast secretory system of Pichia pastoris and their expression induced in the presence of methanol. Spectrophotometric analysis and Disc clear zone assay using the supernatant of the yeast growth media showed that both of the two peptides had strong activities against Staphylococcus aureus, MRSA (methicillin resistance Staphylococcus aureus), MRSA2242, and MRSA-2250, but no effect on commensal Lactobacillus strains. PCR analysis of the genomic DNA of transformed Pichia pastoris using AOX1 primers revealed that the two cDNAs were integrated into the genome at the AOX1 locus. Our result suggests that these peptides could be developed as a useful alternative to classic chemical antibiotics.
        4,000원
        76.
        2013.10 구독 인증기관·개인회원 무료
        The antibiotic peptide PAJE (RWKIFKKPFKISIHL-NH2), designed incorporating the N-terminal α-helical segments of papiliocin and jelleine, is a 15-residue hybrid peptide that has a broad spectrum of activity against Gram-negative, positive bacteria and fungi. In this study, we successfully expressed bioactive PAJE in Escherichia coli cells that are highly sensitive to this peptide. For the efficient production of peptide, we synthesized gene encoding PAJE, and fused the sequence in-frame to ketosteroid isomerase (KSI) gene to construct an expression vector pET29b-PAJE-KSI, which was then used to transform E. coli BL21 (DE3). The fusion protein PAJE-KSI was expressed as inclusion body at high level (more than 30% of the total proteins). Recombinant PAJE was easily released by cleavage of the fusion protein with cyanogen bromide (CNBr). Subsequently, we purified the recombinant PAJE by FPLC chromatography. The purified PAJE displayed considerably antibacterial activity identical to that previously reported for chemically synthesized PAJE. The results indicated that successful expression of PAJE in E. coli cells and efficient procedure for purification may lead to a cost-effective platform for the mass production of PAJE.
        77.
        2013.10 구독 인증기관·개인회원 무료
        BmCecB1 are antimicrobial peptides from Bombyx mori and belongs to cecropin family. Antimicrobial peptides are important components of the innate immune systems in all living organism. This peptide has antibacterial activity against several Gram-positive and Gram-negative bacteria. To produce the BmCecB1 antimicrobial peptide, we constructed transgenic silkworm that expressed BmCecB1 gene under the control BmA3 promoter using piggyBac vector. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. Mixtures of the donor vector and helper vector were micro-injected into 600 eggs of bivoltin silkworms, Baegokjam. In total, 49 larvae (G0) were hatched and allowed to develop into moths. The resulting G1 generation consisted of 22 broods, and we selected 2 broods containing at least 1 EGFP-positive embryo. The rate of successful transgenesis for the G1 broods was 11%. We identified 9 EGFP-positive G1 moths and these were backcrossed with wild-type moths. With the aim of identifying a BmCecB1 as antimicrobial peptide, we investigated the Radical diffusion Assay (RDA) and then demonstrated that BmCecB1 possesses high antibacterial activities against Gram-negative bacteria.
        78.
        2013.10 구독 인증기관·개인회원 무료
        Previously, we performed de novo RNA sequencing of Scolopendra subpinipes mutilans using high-throughput sequencing technology and identified several AMP candidates. Among them, a synthetic peptide (CP112) was designed based on the physicochemical properties of antimicrobial peptide such as length, charge, isoelectric point. Here, we have assessed the antimicrobial activities of CP112 against various microbes and the antioxidative effects. The results showed that CP112 had antimicrobial activities in radial diffusion assay and colony count assay. In addition, we found that CP112 bound to the surface of microorganisms via a specific interaction with lipoteichoic acid, lipopolysaccharide and peptidoglycan, which is one of bacteria cell wall components. Furthermore, CP112 has shown significant DPPH radical scavenging activity. Taken together, the results would be provided the basis for developing of peptide antibiotics and antioxidants.
        79.
        2013.10 구독 인증기관·개인회원 무료
        Previously, we have performed de novo RNA sequencing of Scolpendra subpinipes mutilans using next generation sequencing technology and identified several AMP candidates. Among them, a synthetic peptide (scolopendrasin I) was designed based on SVM algorithm. In this study, we reported that the synthetic peptide scolopendrasin I had an antimicrobial and anticancer activity. As a result, scolopendrasin I showed antibacterial activities against Gram positive and Gram negative bacteria strains in radial diffusion assay and colony count assay without hemolytic activity. In addition, we confirmed that scolopendrasin I bound to the surface of bacteria via a specific interaction with lipoteichoic acid and lipopolysaccharide, which is one of bacteria cell membrane components. In addition, we found that scolopendrasin I had anticancer activities in the human leukemic T lymphocyte cell line Jurkat using MTS assay. In conclusion, our results suggested that scolopendrasin I could be useful for developing peptide antibiotics and anticancer agents.
        80.
        2013.10 구독 인증기관·개인회원 무료
        The centipede Scolopendra subspinipes mutilans has been a medically important arthropod species by using it as a traditional medicine for the treatment of various diseases. In this study, we derived a novel lactoferricin B like peptide (LBLP) from the whole bodies of adult centipedes, S. s. mutilans, and investigated the antifungal effect of LBLP. LBLP exerted an antifungal and fungicidal activity without hemolysis. To investigate the antifungal mechanism of LBLP, a membrane study with propidium iodide was first conducted against Candida albicans. The result showed that LBLP caused fungal membrane permeabilization. The assays of the three dimensional flow cytometric contour plot and membrane potential further showed cell shrinkage and membrane depolarization by the membrane damage. Finally, we confirmed the membrane-active mechanism of LBLP by synthesizing model membranes, calcein and FITC-dextran loaded large unilamellar vesicles. These results showed that the antifungal effect of LBLP on membrane was due to the formation of pores with radii between 0.74 nm and 1.4 nm. In conclusion, this study suggests that LBLP exerts a potent antifungal activity by pore formation in the membrane, eventually leading to fungal cell death.
        1 2 3 4 5