A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton–Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton–Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.
For a plastic diffusion lens to uniformly diffuse light, it is important to minimize deformation that may occur during injection molding and to minimize deformation. It is essential to control the injection molding condition precisely. In addition, as the number of meshes increases, there is a limitation in that the time required for analysis increases. Therefore, We applied machine learning algorithms for faster and more precise control of molding conditions. This study attempts to predict the deformation of a plastic diffusion lens using the Decision Tree regression algorithm. As the variables of injection molding, melt temperature, packing pressure, packing time, and ram speed were set as variables, and the dependent variable was set as the deformation value. A total of 256 injection molding analyses were conducted. We evaluated the prediction model's performance after learning the Decision Tree regression model based on the result data of 256 injection molding analyses. In addition, We confirmed the prediction model's reliability by comparing the injection molding analysis results.
This study wanted to optimize the radiator tank's deformation assembled on the automotive engine block. Among the experimental planning methods, the Taguchi method was used to find optimal molding conditions to minimize plastic covers' deformation. The four main factors used in the Taguchi method were selected as the main factors: resin temperature, pressure time, coolant temperature, and cooling time. The number of cycles for each factor was divided into five stages, and a total of 25 experiments were conducted. The experiment used the Moldflow program, an injection molding analysis program. The maximum deformation obtained under the existing molding conditions was about 1.318mm. Still, the deformation of the mold applied with the optimal molding conditions obtained using the Taguchi method was approximately 1.273mm, which showed that the maximum deformation was reduced by 3.4% compared to the existing molding conditions.
Excellent plastic moldings is possible through optimization of many molding parameters. In particular, the deformation of a plastic part is affected by various factors during molding. Therefore, it is very important to select the optimum molding conditions that minimize the deformation of the molded part. Experimental design is used to select optimal molding conditions. In this study, the molding conditions were selected to minimize the deformation of the electric plastic plug of the electric vehicle using the Taguchi method in the experimental design method. Using the Taguchi Method, we found that the deformation of the plug moldings was reduced by about 7.2% compared to before optimization.
The cooling process in the injection molding requires the longest time. Therefore, a lot of studies have been conducted to reduce the cooling time. In particular, studies on conformal cooling channels using 3D printing are actively being conducted. In this study, the effect of the conformal cooling channel considering the hood shape instead of the conventional linear cooling channel was investigated by injection molding analysis. In the analysis results, when the conformal cooling channel was applied, the length deformation of the molded product was reduced by about 33% and the circular deformation of the hood assembled on the lens was reduced by about 7.1㎛.
The deformation properties of a TiC-Mo eutectic composite were investigated in a compression test at temperaturesranging from room temperature to 2053K and at strain rates ranging from 3.9×10−5s−1 to 4.9×10−3s−1. It was found that thismaterial shows excellent high-temperature strength as well as appreciable room-temperature toughness, suggesting that thematerial is a good candidate for high-temperature application as a structure material. At a low-temperature, high strength isobserved. The deformation behavior is different among the three temperature ranges tested here, i.e., low, intermediate and high.At an intermediate temperature, no yield drop occurs, and from the beginning the work hardening level is high. At a hightemperature, a yield drop occurs again, after which deformation proceeds with nearly constant stress. The temperature- andyield-stress-dependence of the strain is the strongest in this case among the three temperature ranges. The observed high-temperature deformation behavior suggests that the excellent high-temperature strength is due to the constraining of thedeformation in the Mo phase by the thin TiC components, which is considerably stronger than bulk TiC. It is also concludedthat the appreciable room-temperature toughness is ascribed to the frequent branching of crack paths as well as to the plasticdeformation of the Mo phase.
PURPOSES : Plastic deformation is frequently made in intersection asphalt pavement at its early age due to deceleration and stoppage of vehicles. This study has been performed to provide a mechanistic basis for reasonable selection of paving method to minimize the plastic deformation at intersection. METHODS : Pavement layer, temperature, traffic volume of the intersections managed by the Daejeon Regional Construction and Management Administration were collected to calculate asphalt dynamic modulus with pavement depth by using a prediction equation suggested by the Korean pavement design guide. Performance of ordinary dense-graded asphalt pavement, polymer modified asphalt pavement, and fiber reinforced asphalt pavement was analyzed by finite element method and the results were used in a performance model to predict the plastic deformation. RESULTS : In aspect of performance, the three paving methods were usable under low traffic while the fiber reinforced asphalt pavement was the most suitable under heavy traffic. CONCLUSIONS : Reasonable paving method suitable for traffic characteristics in the intersection might be decided by considering economic feasibility.
안전한 내진설계를 위해서는 부재에 요구되는 소성변형을 평가하여야 한다. 본 연구에서는 복잡한 비선형해석없이 탄성 해석결과에 근거하여 이중골조의 부재소성변형을 평가할 수 있는 빠르고 간편한 방법을 개발하였다. 보, 기둥, 벽체 등의 소성변형은 부재강성, 층간변위비, 모멘트 재분배, 단면치수 및 소성힌지 위치의 함수로 결정된다. 벽체와 보가 모멘트 접합된 경우에는 벽체의 소성변형에 의한 로킹효과를 고려하여 증가된 소성변형을 구한다. 8층 이중골조에 대하여 제안된 방법을 적용하였고, 비선형해석을 통하여 제안된 방법의 정확성을 검증하였다. 제안된 방법은 단순계산으로 부재소성변형을 합리적으로 예측하지만, 정확한 부재소성변형 평가를 위해서는 비탄성 층간변위비의 정확한 예측이 필요한 것으로 나타났다. 제안된 방법은 향후 성능중심 내진설계에 활용할 수 있을 뿐만 아니라 기존 건물의 성능평가에도 활용될 수 있을 것이다.
Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures byactivating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasingstrain rate from ε=1.04×10-5sec-1 to 2.08×10-5sec-1 the yield drop was suppressed and resulted in higherYoung's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using atransmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plasticdeformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However,dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in thesample with higher strain rate, which may cause the higher work hardening.
Yttria stabilized zirconia single crystals show plastic deformation at high temperatures by activating dislocations. The plastic deformation is highly dependent on crystallographic orientation. When the samples were deformed at different orientations, stress-strain curves changed by operating different slip systems. The strength of samples was also highly dependent on crystallographic orientation, i.e., samples without yield drop showed higher strength than that of samples exhibiting yield drop. The slip systems in the sample deformed along<112>,<111> and<001> agreed with the theoretical values of the plastic deformation, following Schmid's Law. Dislocations play a major role in the plastic deformation of this crystal. At the early stages of plastic deformation, all samples exhibited dislocation dipoles and, in the later stages, dislocation interactions occurred by forming nodes, tangles and networks. In this study, three different orientations, [11-2], [111] and [001] were employed to explain the plastic deformation behavior. A microstructural analysis was performed to elucidate the mechanism of the plastic behavior of this crystal.
교량의 교각과 같은 원형기둥구조물의 성능과 강도을 향상시키기 위해 최근 콘크리트 충전강관(CFT: concrete-filled steel tube)의 적용이 점차 증가하고 있다. 이러한 콘크리트 충전강관 구조물의 정확한 소성설계를 위해서는 사용된 재료인 강재 및 콘크리트의 대변형 거동을 구현할 수 있는 소성모델이 필요하다. 본 연구에서는 사용강재의 실험을 통하여 제안된 소성모델을 적용한 탄소성 대변형 해석을 개발하였으며 콘크리트 충전강관 기둥 해석과 실험 결과에 비교하여 그 정도 및 타당성을 검증하였다. 그리고 개발된 프로그램을 이용하여 콘크리트 충전강관 기둥의 초기처짐이 극한장도에 미치는 영향 및 상관관계를 명확히 파악하였다.
본 연구에서는 임의의 반복하중 작용시 강구조물에 발생하는 대변형 및 반복소성거동을 정확히 예측하기 위하여 유한변위이론과 반복소성이력모델을 적용한 3차원 탄소성 유한요소 해석기법을 개발하였다. 반복소성이력모델은 강재의 단조재하실험 및 반복하중실험 결과에 기초하여 정식화되었다. 개발된 해석기법의 정도는 Bilinear모델 및 미소변위이론을 적용한 해석기법 및 실험결과와 비교하여 검증하였다. 본 연구에서 개발한 유한변위이론과 반복소성이력모델을 적용한 3차원 유한요소 해석기법이 임의의 반복하중을 받는 원형강교각의 대변형 및 반복소성거동을 정확히 예측할 수 있음을 알 수 있었다.
최근 강구조물의 장경간화 및 고층화로 인하여 고강도강재의 사용이 점차 증가하고 있다. 고강도강재(POSTEN60, POSTEN80)가 적용된 강구조물의 정확한 내진설계를 위해서는 반복하중 작용시 발생하는 대변형 및 비선형반복거동을 구현할 수 있는 해석기법이 필요하다. 본 연구에서는 고강도강재의 단조재하실험 및 반복하중실험을 기초하여 반복소성모델을 제안하였다. 제안된 소성모델과 유한변위이론을 적용한 3차원 탄소성 유한변위해석기법을 개발하였으며 이를 실험값과 비교하여 검증하였다. 검증된 3차원 탄소성 유한변위해석을 이용하여 고강도 원형강교각의 내진해석을 수행하였다. 또한, 고강도 원형강교각의 지름-두께비에 따른 내진성능을 명확히 하였다.