검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 61

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.
        4,000원
        3.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100oC. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.
        4,000원
        4.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a graphite block is fabricated using artificial graphite processing byproduct and phenolic resin as raw materials. Mechanical and electrical property changes are confirmed due to the preforming method. After fabricating preforms at 50, 100, and 150 MPa, CIP molding at 150 MPa is followed by heat treatment to prepare a graphite block. 150UP-CIP shows a 12.9% reduction in porosity compared with the 150 MPa preform. As the porosity is decreased, the bulk density, flexural strength, and shore hardness are increased by 14.9%, 102.4%, and 13.7%, respectively; and the deviation of density and electrical resistivity are decreased by 51.9% and 34.1%, respectively. Therefore, as the preforming pressure increases, the porosity decreases, and the electrical and mechanical properties improve.
        4,000원
        5.
        2022.05 구독 인증기관·개인회원 무료
        The mixing powder of vitrification material and metallic oxide sludge was solidified by hot isostatic press method and was tested to check whether the solidified waste disposal acceptance criteria were met or not. From various contaminated tank in nuclear power plants, and other nuclear energy facilities, radioactive sludge based on metallic oxide can be generated. The most of tank consist of stainless steel can be oxidated by the long-term exposure on oxygen and moisture, and then can be made sludge layer based on metallic oxide on the inner wall of contaminated tank. Radioactive sludge waste should be solidified and disposed. Melting and hardening is the most basic method for solidification. The melting points of metallic oxide of stainless steel as Fe3O4, NiO, Cr2O3 are 1597, 1955, 2435, respectively. Those are very high temperature. To melt these metallic oxides, a furnace capable of raising the temperature to a very high temperature is required, which requires a lot of thermal energy, which may lead to an increase in disposal cost. Therefore, it is necessary to lower the melting point and solidify non-melted metallic oxide powder by adding vitrifying material powder as Na2O, SiO2, B2O3. The more vitrification material is added, the easier it is to solidify the sludge based on metallic powder at a low temperature, but there is a problem in that the total waste volume increases due to the addition of vitrification material. In this study, the mixing ratio and temperature conditions that can fix the sludge while adding a minimum amount of vitrification material will be confirmed. Mixing ratio conditions of the vitrification material and sludge powder are 10:90, 15:85, 20:80, 25:75. To fix the metallic oxide sludge by melting only the vitrification material without completely melting the metallic oxide, compression by external pressure is required. Therefore, the HIP (Hot Isostatic Pressing) method was used to solidify the metallic oxide sludge by simultaneously heating and pressurizing it. Because the softening points of most of vitrification based on Na2O, SiO2, B2O3 are ranged from 800 to 1000, temperature conditions are 800, 900, 1000. Since the compressive strength for disposing of the solidified materials was 3.4 MPa, the maximum pressure condition was set to 5000 psi (about 34 MPa), which is 10 times 3.4 MPa. And optimal mixing ratio, temperature, pressure conditions that meet the solidified waste disposal acceptance criteria will be found.
        6.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.
        4,000원
        7.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Zirconia has excellent mechanical properties, such as high fracture toughness, wear resistance, and flexural strength, which make it a candidate for application in bead mills as milling media as well as a variety of components. In addition, enhanced mechanical properties can be attained by adding oxide or non-oxide dispersing particles to zirconia ceramics. In this study, the densification and mechanical properties of YSZ-TiC ceramic composites with different TiC contents and sintering temperatures are investigated. YSZ - x vol.% TiC (x=10, 20, 30) system is selected as compositions of interest. The mixed powders are sintered using hot pressing (HP) at different temperatures of 1300, 1400, and 1500oC. The densification behavior and mechanical properties of sintered ceramics, such as hardness and fracture toughness, are examined.
        4,000원
        8.
        2020.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The high-temperature stability of YSZ specimens fabricated by die pressure and cold isostatic press (CIP) is investigated in CaCl2-CaF2-CaO molten salt at 1,150 °C. The experimental results are as follows: green density 46.7 % and 50.9 %; sintering density 93.3 % and 99.3 % for die press and CIP, respectively. YSZ foremd by CIP exhibits higher stability than YSZ formed by die press due to denseness dependency after high-temperature stability test. YSZ shows peaks mainly attributed to CaZrO3, with a small t-ZrO2 peak, unlike the high-intensity tetragonal-ZrO2 (t-ZrO2) peak observed for the asreceived specimen. The t-ZrO2 phase of YSZ is likely stabilized by Y2O3, and the leaching of Y2O3 results in phase transformation from t-ZrO2 to m-ZrO2. CaZrO3 likely forms from the reaction between CaO and m-ZrO2. As the exposure time increases, more CaZrO3 is observed in the internal region of YSZ, which could be attributed to the inward diffusion of molten salt and outward diffusion of the stabilizer (Y2O3) through the pores. This results in greater susceptibility to phase transformation and CaZrO3 formation. To use SOM anodes for the electroreduction of various metals, YSZ stability must be improved by adjusting the high-density in the forming process.
        4,000원
        9.
        2020.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 μm. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.
        3,000원
        10.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Niobium is one of the most important and rarest metals, and is used in the electronic and energy industries. However, it’s extremely high melting point and oxygen affinity limits the manufacture of Nb coating materials. Here, a Nb coating material is manufactured using a kinetic spray process followed by hot isotactic pressing to improve its properties. OM (optical microscope), XRD (X-ray diffraction), SEM (scanning electron microscopy), and Vickers hardness and EPMA (electron probe micro analyzer) tests are employed to investigate the macroscopic properties of the manufactured Nb materials. The powder used to manufacture the material has angular-shaped particles with an average particle size of 23.8 μm. The porosity and hardness of the manufactured Nb material are 0.18% and 221 Hv, respectively. Additional HIP is applied to the manufactured Nb material for 4 h under an Ar atmosphere after which the porosity decreases to 0.08% and the hardness increases to 253 Hv. Phase analysis after the HIP shows the presence of only pure Nb. The study also discusses the possibility of using the manufactured Nb material as a sputtering target.
        4,000원
        11.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The ‘hybrid carbon-fiberreinforced mesophase-pitch-derived carbon-matrix’ composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.
        4,000원
        12.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The application of sublimation transfer printing is widely expanded in the textile industry according to the growth of IT technology. Therefore, its improvement of manufacturing process is strongly needed. In this paper, new manufacturing process of sublimation transfer printing by combining conveyor system and hot plate pressing is developed. New process has improved quality and productivity of sublimation transfer printing. It is shown that the new process has better indices than existing process in the required time, man power, production output and sales. New process is able to cope with mass production and various manufacturing condition actively.
        4,000원
        13.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Half-heusler phase ZrNiSn is one of the potential thermoelectric materials for high temperature application. In an attempt to investigate the effect of Sb doping on thermoelectric properties, half-heusler phase () was synthesized by mechanical alloying of stoichiometric elemental powder compositions, and consolidated by vacuum hot pressing. Phase transformations during mechanical alloying and hot consolidation were investigated using XRD. Sb doped ZrNiSn was successfully produced in all doping ranges by vacuum hot pressing using as-milled powders without subsequent annealing. Thermoelectric properties as functions of temperature and Sb contents were evaluated for the hot pressed specimens. Sb doping up to x=0.04 in was shown to be effective on thermoelectric properties and the figure of merit (ZT) was shown to reach to the maximum at x=0.02 in this study.
        4,000원
        14.
        2009.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium and its alloys are attractive as light weight structural/functional materials for high performance application in automobile and electronics industries due to their superior physical properties. In order to obtain high quality products manufactured by the magnesium powders, it is important to control and understand the densification behavior of the powders. The effect of the sheath surrounding the magnesium powders on the plastic deformation and densification behavior during equal channel angular pressing was investigated in the study by experimental and the finite element methods. A modified version of Lee-Kim's plastic yield criterion, notably known as the critical relative density model, was applied to simulate the densification behavior of magnesium powders. In addition, a new approach that extracts the mechanical characteristics of both the powder and the matrix was developed. The model was implemented into the finite element method, with which powder compaction under equal channel angular pressing was simulated.
        4,000원
        15.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, bottom-up powder processing and top-down severe plastic deformation processing approaches were combined in order to achieve both full density and grain refinement with least grain growth. The numerical modeling of the powder process requires the appropriate constitutive model for densification of the powder materials. The present research investigates the effect of representative powder yield function of the Shima-Oyane model and the critical relative density model. It was found that the critical relative density model is better than the Shima-Oyane model for powder densification behavior, especially for initial stage.
        4,000원
        16.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at . Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.
        4,000원
        17.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        황색 꽃의 압화 후의 변색의 원인이 무엇인지를 모색하기 위해 나리, 온시디움, 장미, 튤립, 금어초, 카네 이션, 프리지아, 칼라, 거베라, 해바라기와 라넌큘러스 황색 절화 11종을 식물재료로 사용하였다. 이들 식물 재료의 꽃잎의 특성과 화색소를 분석하고 압화 후의 변색 정도와의 상호 관련성을 검토하였다. 꽃잎 두께, 꽃잎의 장폭비, 그리고 꽃잎의 수분함량은 압화의 변색 에 크게 영향을 미치지 않았다. 카로티노이드에 의해 황색이 발현되는 종은 나리, 온시디움, 장미와 튤립이 었으며, 플라보노이드에 의해 황색이 발현되는 종은 금 어초, 카네이션, 프리지아와 칼라였으며, 카로티노이드 와 플라보노이드가 공존하면서 황색이 발현되는 종은 거베라, 해바라기와 라넌큘러스였다. 카로티노이드가 단 독이거나 플라보노이드와 공존하거나 상관없이 카로티노이드에 의해 황색이 발현되는 경우는 압화의 변색 정도가 심했다. 그러나 플라보노이드에 의해 황색이 발 현되는 종은 거의 변색 되지 않았다. 암처리 한 압화 는 거의 변색되지 않았으나 광처리 한 것은 변색의 정도가 심했다.
        4,000원
        18.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        장미의 대표적인 화색인 적색 ‘Red Corvette’, 분홍 색 ‘Nobless’, 황색 ‘Golden Metal’ 및 백색 ‘Rose Yumi’ 꽃을 재료로 건조방법에 따른 화색의 변화를 조사하고, 4주 및 8주간의 광처리(2,000lux, 16시간, 형광조명) 뒤의 화색 변화를 조사하였다. 모든 종류에 서 실리카겔 매트로 압화 하는 처리구가 압화 당시와 광처리 후 화색변화가 가장 적었고, 전기압화기의 사용 으로 꽃잎은 갈변화가 촉진되었다. 장미 적색은 한국산 시트지, 분홍색과 황색은 한국산 전기압화기, 장미 백 색은 일본산 전기압화기 처리구가 화색의 변화가 가장 심하였다. 압화 당시 화색의 변화가 가장 컸던 것은 적색 장미였고, 그 다음이 분홍색, 황색, 백색 순이었 다. 광처리에 의한 화색 변화정도가 가장 심했던 것은 황색 품종이었고, 다른 3종류는 다소 안정적이었다.
        4,000원
        19.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the bottom-up powder metallurgy and the top-down severe plastic deformation (SPD) techniques for manufacturing bulk nanomaterials were combined in order to achieve both full density and grain refinement without grain growth of rapidly solidified Al-20 wt% Si alloy powders during consolidation processing. Continuous equal channel multi-angular processing (C-ECMAP) was proposed to improve low productivity of conventional ECAP, one of the most promising method in SPD. As a powder consolidation method, C-ECMAP was employed. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructures of the ECMAP processed materials. It was found that effective properties of high strength and full density maintaining nanoscale microstructure are achieved. The proposed SPD processing of powder materials can be a good method to achieve fully density and nanostructured materials.
        4,000원
        20.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium and magnesium alloys are promising materials for light weight and high strength applications. In order to obtain homogeneous and high quality products in powder compaction and powder forging processes, it is very important to control density and density distributions in powder compacts. In this study, a model for densification of metallic powder is proposed for pure magnesium. The mode] considers the effect of powder characteristics using a pressure-dependent critical density yield criterion. Also with the new model, it was possible to obtain reasonable physical properties of pure magnesium powder using cold iso-state pressing. The proposed densification model was implemented into the finite element method code. The finite element analysis was applied to simulating die compaction of pure magnesium powders in order to investigate the density and effective strain distributions at room temperature.
        4,000원
        1 2 3 4