이미지 분석을 통한 재료의 상 구분은 재료의 미세구조 분석을 위해 필수적이다. 이미지 분석에 주로 사용되는 마이크로-CT 이미 지는 대체로 재료를 구성하고 있는 상에 따라 회색조 값이 다르게 나타나므로 이미지의 회색조 값 비교를 통해 상을 구분한다. 순환골 재의 고체상은 수화된 시멘트풀과 천연골재로 구분되는데, 시멘트풀과 천연골재는 CT이미지 상에서 유사한 회색조 분포를 보여 상 을 구분하기 어렵다. 본 연구에서는 Unet-VGG16 네트워크를 활용하여 순환골재 CT 이미지로부터 천연골재를 분할하는 자동화 방법 을 제안하였다. 딥러닝 네트워크를 활용하여 2차원 순환골재 CT 이미지로부터 천연골재 영역을 분할하는 방법과 이를 3차원으로 적 층하여 3차원 천연골재 이미지를 얻는 방법을 제시하였다. 선별된 3차원 천연골재 이미지에서 각각의 골재 입자를 분할하기 위해 이 미지 필터링을 사용하였다. 골재 영역 분할 성능을 정확도, 정밀도, 재현율 F1 스코어를 통해 검증하였다.
Asphalt concrete, which is used as a road base material, accounts for >90% of a road pavement. A huge amount of waste concrete and waste asphalt concrete aggregates are generated. Recently, carbon neutrality is promoted across all industries for sustainability. Therefore, to achieve carbon neutrality in the asphalt concrete industry, waste asphalt concrete aggregates should be recycled. Additionally, road base materials are prepared using additives to ensure structural stability, durability, and economic efficiency. In this study, recycled asphalt concrete aggregates were used to evaluate the physical properties of road base materials according to the type of polymer additive and mixing method, and the applicability of road base each material was evaluated. Results showed that when the acrylate-based polymer additive was mixed, the uniaxial compressive strength was 30% higher. Furthermore, the compressive strength of the split mix was improved by ~29% compared to the total mix.
The asphalt concrete industry, accounting for >90% of road pavement, is a crucial contributor to construction waste. This study focuses on the recycling of asphalt concrete recycled aggregates, which currently exhibits a low rate. We investigated the application of these aggregates, combined with hardener and mixing water, in the development of ecofriendly road base materials using circular aggregates. Results revealed that the 13-mm asphalt concrete recycled aggregates met all quality standards. However, the 25-mm aggregates did not conform to the reclaimed asphalt content standard; however, they met other quality standards. Moreover, the experimental results for the hardener and mixing water indicated compliance with all quality standards.
PURPOSES : In this study, the alkali aggregate reactivity and expansion characteristics of mortar mixed with waste glass (a recycled aggregate) were confirmed to verify the alkali-silica reaction (ASR) stability and review the appropriateness of the alkali aggregate reactivity test method following the replacement of recycled aggregate.
METHODS : The alkali-aggregate reactivity of waste glass aggregates was measured using the chemical and physical methods described in KS F 2545 and ASTM C 1260, respectively. The reactivity was classified by comparing the results. Cement with a high-alkali content was used to simulate an environment that can induce ASR. Non-reactive fine aggregates, waste glass fine aggregates, reactive general aggregates, and Ferronickel slag aggregates were used as control groups.
RESULTS : Waste glass fine aggregates were classified as reactive when applying the chemical method. In the physical method, they were classified as reactive at 100% and latent reactive at 1%, based on the mixing ratio. Additionally, we discovered that the reliability of the chemical method was low since the ASR of the aggregates was classified differently based on the evaluation method, while the results of the chemical and physical test methods were inconsistent.
CONCLUSIONS : To determine the alkali reactivity of recycled aggregates, the complex use of chemical and physical methods and analysis based on the mixing ratio of the reactive aggregates are required. Small amounts of waste glass aggregate replacements affected the ASR. Because ASR reaction products can affect the long-term thermal expansion of the structure, further research is needed to use ASR aggregates in structures.
PURPOSES : The objective of this study was to evaluate the field applicability of chip seals using recycled aggregates by comparing performance between natural aggregates and recycled aggregates for chip seals.
METHODS : In order to check the performance of chip seals using recycled and natural aggregates, Bitumen Bond Strength (BBS) test, Vialit and bleeding tests were carried out. Cationic emulsions (RS(C)-2 and latex modified RS(C)-2L) were used in the tests. Granite aggregates were used as the natural aggregate and recycled aggregate from road wastes were used as the recycled aggregate. The aggregate was used with uniform gradation between 10 mm and 4.75 mm to clearly compare the performance difference between natural and recycled aggregates.
RESULTS : Test results showed that the aggregate retention was low for both natural and recycled aggregates when applying RS(C)-2 (unmodified emulsion), but there was almost no difference between them when applying RS(C)-2L and RS(C)-2L-1 (modified emulsion) in the Vialit test results. In the bleeding tests, there was no bleeding for both natural and recycled aggregates when applying RS(C)-2 and RS(C)-2L.
CONCLUSIONS: It was possible to apply chip seals using recycled aggregates in the field because the chip seals with recycled aggregates and RS(C)-2L (modified emulsion) showed aggregate retention similar to that of natural aggregates, and there was no bleeding.
Recently, redevelopment and reconstruction projects have caused problems such as depletion of natural aggregates, and the use of recycled aggregate is being reevaluated as an optimal alternative. Therefore, in this study, the mechanical and deformation characteristics of Environment-Friendly Recycled Coarse Aggregate (here after, EFRCA) concrete reinforced with para-aramid fiber with high strength and high elasticity are examined. The experimental main parameters were EFRCA replacement ratio (0, 30 and 50%) and para-aramid fiber volume fraction (0, 0.75 and 1.0%). Experimental results show that the EFRCA concrete has lower compressive strength than plain concrete. However, compared with the natural aggregate, the EFRCA concrete, which exhibited low material properties, showed almost the same performance as plain concrete, such as increased flexural strength and improved ductility by incorporating para-aramid fibers. Through the experiment, it is considered that the most suitable para-aramid volume fraction is 0.75%. Based on these results, the experimental results related to the performance degradation of EFRCA concrete containing para-aramid fibers are secured and basic data for determining the reuse possibility and reinforcement method of structures are presented.
PURPOSES : This study was performed to determine a systematic approach for measuring the coefficient of thermal expansion (COTE) of concrete specimens. This approach includes the initial calibration of measurement equipment. Test variables include coarse aggregate types such as natural aggregate, job-site produced recycled concrete aggregate, and recycled aggregate processed from an intermediate waste treatment company.
METHODS: First, two cylindrical SUS-304 specimens with a known COTE value of 17.3×10-6m/m/℃. were used as reference specimens for the calibration of each measurement system. The well-known AASHTO TP-60 COTE apparatus for concrete measurement was utilized in this study. Four different measurement apparatuses were used with each LVDT installed and a calibration value was determined using each measurement apparatus.
RESULTS : In the initial experimental stage, calibration values for each measurement apparatus were assumed to be almost identical. However, using the SUS-304 samples as a reference, the calibration values for the four different measurement apparatuses were found to range from 3.49 to 8.86 ×10-6m/m/℃. Using different adjusted values for each measurement apparatuses, COTE values for the three different concrete specimens were obtained. The COTE value of concrete made with natural coarse aggregate was 9.91×10-6m/m/℃, that of job-site produced recycled coarse aggregate was 10.45×10-6m/m/℃, and that of recycled aggregate processed from the intermediate waste treatment company was 10.82×10-6m/m/℃.
CONCLUSIONS: We observed that the COTE value of concrete made from recycled concrete aggregates (RCA) was higher than that of concrete made from natural coarse aggregate. This difference is due to the fact that the total volumetric mortar proportion in the RCA mix is higher than that in the concrete mix made with natural coarse aggregate.
PURPOSES : In Korea, most designs of pavement had been mainly performed by considering CBR of granular materials before KPRP(Korea Pavement Research Program) and 86 AASHTO design method were introduced. Since then, the trend of the pavement designs gradually have moved to using mechanical characteristics throughout the resilient modulus based on the test results up to recently. In this study, we should like to research the mechanical characteristics of paving materials containing Recycled aggregates through the cyclic loading triaxial compression tests. METHODS : The kinds of materials were tested; coarse grained subbase materials, refining aggregates base materials and recycled aggregates. RESULTS : The present study aims to figure out the resilient modulus of paving materials containing Recycled aggregates through the cyclic loading triaxial compression tests. CONCLUSIONS : The test results revealed that the engineering properties of the recycled aggregates were more excellent than the those of others.
PURPOSES : This study was performed to investigate a feasibility of job-site use of recycled concrete aggregate exceeding 3% of absorption rate. Test variables are coarse aggregate types such as natural aggregate, job-site processed recycled aggregate, and recycled aggregate processed from the intermediate waste treatment company. METHODS : First, aggregate properties such as gradation, specific gravity and absorption rate were determined. Next a basic series of mechanical properties of concrete was tested. RESULTS : All strength test results such as compression, flexure and modulus were satisfied for the minimum requirements. Finally up to first 48 elapsed days the shrinkage strains of concretes made from both recycled aggregates (in case of volume-surface ratio of 300) appeared to be greater than 26% of the companion concretes made from natural aggregates. CONCLUSIONS : Drying shrinkage result is ascribed to greater absorption rate and specific gravity of those specimens made from recycled aggregate. This may be reduced with an addition of admixtures.
건설폐기물의 재활용방법 중 하나는 폐콘크리트 재생골재를 도로포장재료로 활용하는 것이다. 하지만 재생골재에 대한 많은 연구와 기술개발에도 불구하고 생산공정에 포함된 이물질 때문에 실제 도로포장재료로의 적용은 미비한 실정이다. 본 연구에서는 재생골재내에 포함된 이물질의 특성에 따라 무기이물질과 유기이물질로 구분하였으며 , 각 이물질이 포장 공용성에 미치는 영향을 제시하였다. 또한 재생골재내에 포함된 무기이물질 함유량과 압축강도와의 관계, 유기이물질 함유량과 수정 CBR과의 상관관계를 통하여 도로포장층인 린콘크리트 기층과 보조기층에 적용 가능한 이물질 함량기준을 제시하였다. 린콘크리트 기층에는 무기이물질 함유량 질량비 10% 이하, 입상재료 보조기층에는 유기이물질 함유량 부피비 2% 이하일 때 재생골재를 포장에 적용 가능한 것으로 나타났다.
본 연구는 재생골재를 도로의 보조기층재료 및 포장용 콘크리트 골재로 사용하기 위하여 수행되었다. 우선 보조기층재료로서의 활용성 여부를 파악하기 위하여 실내다짐시험, CBR 시험, 평판재하시험을 수행하였으며, 콘크리트용 골재로의 활용성을 보기 위하여 재생골재 첨가비율을 0, 20, 40, 60, 80%로 하여 설계기준강도 280kgf/cm2인 표층용 콘크리트를 제조하였다. 제조된 콘크리트로 굳지 않은 콘크리트 성질과 28일 양생 후 강도시험과 동결 융해에 따른 내구성 시험을 통해 폐콘크리트 재생골재의 활용성을 도로포장재료 측면에서 검토하였다. 실험결과 재생골재는 보조기층재료로서의 사용이 충분히 가능하며 표층용 콘크리트 골재로서 재생골재 첨가비율 40%까지 활용이 가능함을 알 수 있었다.
본 연구는 재생골재를 도로의 보조기층재료 및 포장용 콘크리트 골재로 사용하기 위하여 수행되었다. 우선 보조기층재료로서의 활용성 여부를 파악하기 위하여 실내다짐시험, CBR 시험, 평판재하시험을 수행하였으며, 콘크리트용 골재로의 활용성을 보기 위하여 재생골재 첨가비율을 0, 20, 40, 60, 80%로 하여 설계기준강도 280kgf/cm2인 표층용 콘크리트를 제조하였다. 제조된 콘크리트로 굳지 않은 콘크리트 성질과 28일 양생 후 강도시험과 동결 융해에 따른 내구성 시험을 통해 폐콘크리트 재생골재의 활용성을 도로포장재료 측면에서 검토하였다. 실험결과 재생골재는 보조기층재료로서의 사용이 충분히 가능하며 표층용 콘크리트 골재로서 재생골재 첨가비율 40%까지 활용이 가능함을 알 수 있었다.
In this study, basic research was carried out to improve the absorption rate which is a problem in increasing the recycling rate of recycled fine aggregate and to improve the usability as concrete aggregate. It was confirmed that the absorption rate of the recycled aggregate measured after immersing in the microbial culture solution for the purpose of improving the absorption rate of the circulating fine aggregate for concrete was decreased. However, further studies such as improvement of microbial culture are required to satisfy KS standards.
In this study, structural tests were performed for the para-aramid fiber-reinforced RC beams using Recycled Coarse Aggregates (RCA) according to the main parameters which are RCA replacement ratio (0 and 30%) and para-aramid fiber volume fraction (0, 0.75 and 1.0%). Experimental results show that by reinforcing para-aramid fibers, compared with the natural coarse aggregate, the RCA, which exhibited low structural performance, improved load carrying capacity and ductility.
This study is an experimental program developed to estimate the effect of size on the shear performance of reinforced concrete (RC) beams with stirrups made from recycled coarse aggregates (RCA). The test was conducted on eight RC beams with shear reinforcement, and the main variables were section size and RCA replacement ratio (Rr = 0% or 30%). The tension reinforcement ratio (ρ = 0.012), shear span-to-depth ratio (a/d = 1.5), and width-to-depth ratio (h/b = 1.5) were fixed. Empirical test results, theoretical results, and code calculations were compared for each specimen. The results demonstrated that the empirical test results of each sample compared favorably with the theoretical calculations within a sufficient safety margin (1.32-2.61). Also, a comparison between RCA-RC beams with Rr = 30% and RC beams containing natural coarse aggregates (NCAs) showed that the two beams exhibited similar load-displacement curves and shear strengths. Consequently, RCA-RC beams made using a RCA replacement ratio of up to 30% do not cause safety or serviceability problems.
The aim of this study is a large amount use of recycled aggregates. The considering recycled aggregates replacement ratio is 50% that of natural aggregates. In order to increase the shear capacity of beams, that may be weaken by use of recycled aggregates, steel fibers are reinforced. The main variables are steel fiber volume fractions such as 0%, 0.5%, 0.75% and 1.0%. After the test, it could confirm that the strength and deformation capacity of beams with the steel fiber content values of 0.5% and 0.75% are comprehensively enhanced compared to non reinforcement. After evaluating the shear strength by using shear strength equations of previous researches, it concluded that the strength equation of Oh et al. (2008) is able to predict the shear strength of SFRC beams on the safety side.
KS기준 및 콘크리트표준시방서에는 순환골재를 사용한 콘크리트의 압축강도를 27 MPa 이하로 제한하고 있으며, 이에 따라 27 MPa를 초과하는 순환골재 콘크리트에 대한 역학적 특성에 대한 연구결과는 부족한 상황이다. 따라서, 이 연구에서는 순환굵은골재 사용의 확 대를 위해 압축강도 30∼60 MPa 범주의 굵은순환골재를 사용한 콘크리트의 압축강도를 포함한 역학적 특성을 연구하였다. 실험변수로써 물- 시멘트 비와 굵은순환골재의 치환율을 고려하였다. 고려된 물-시멘트 비는 0.36, 0.46 및 0.53 이고, 순환굵은골재의 치환율은 30, 50, 70 및 100%이다. 실험변수에 따른 순환골재 콘크리트의 7일 및 28일 압축강도, 탄성계수, 인장강도 및 파괴계수 특성을 분석하였다. 물-시멘트 비가 0.36일 때의 탄성계수에 비해 0.53일 때의 탄성계수는 10% 이상 감소하였다. 탄성계수 실험결과와 기존설계코드에 의한 탄성계수 예측결과를 비교하였으며, 설계코드에 의한 탄성계수 예측결과는 실험결과를 과다평가하고 있다. 반면에 설계코드에 의한 파괴계수 예측결과는 압축강 도 40 MPa 이상의 콘크리트의 파괴계수 실험결과를 과소평가하고 있다.