To efficiently develop an automatic assembly system that can enhance the quality and assembly productivity of the shaft assembly in EV relays, a DMU model was utilized. After modeling each component of the assembly system using the CAD software CATIA, a DMU model of the assembly cells and the entire assembly system was created using the assembly model. Additionally, the DMU Kinematics Workbench was employed to verify and validate the design of the automatic assembly system for the shaft assembly, a key component of the EV relay, before actual construction. This approach helped reduce time and costs by minimizing trial and error.
In the case of a rear-wheel drive vehicle, a propeller shaft is installed to transmit the driving force of the engine. At this time, the propeller shaft is divided into 2 or 3 pipes, and the bearing is mounted on the vehicle body. And the end of the propeller shaft is connected to the rear differential and connected to the body through the chassis. Due to this complex structure, the propeller shaft must be highly balanced and the mounting angle must be well maintained. However, depending on the driving conditions of the car, various noise and vibration problems occur due to the aging of the parts and the propeller shaft. Hyundai Motor Company's maintenance center uses 'Noise Observer' to resolve various noise and vibration customer complaints. This paper describes the mechanism of vibration problems caused by unbalance of the propeller shaft and the diagnosis process using a 'Noise Observer'.
A spiral flow path was applied to solve the problem of the existing straight flow path in the leveling shaft, a key component of the self-levelizer that can maintain the height according to the change in payload in EV, SUV. In this study, flow analysis was performed to check the velocity, pressure drop, and flow direction of oil according to the main operating conditions of the leveling shaft with a spiral flow path. As a result of the study, a leveling shaft with a spiral flow path is likely to improve fluid properties around the orifice and inlet valve under compression conditions, and it is judged to have a development application effect.
The intermediate shaft of sliding type is assembled with coated shaft joint and tube joint. Since the intermediate shaft plays a role of absorbing displacement change due to vibration, the intermediate shaft must have a sliding force value in an appropriate range. In this study, an intermediate shaft assembly system for post-processing of defective intermediate shafts was developed. The intermediate shaft assembly system consists of a wear count prediction model and an automatic wear system. A wear count prediction model was created with the initial assembly sliding force, quality, and set values. As a result of applying the intermediate shaft assembly device, the sliding force of the intermediate shaft was induced within the set value range. And it was prevented from the intermediate shaft defect and eliminated manual work.
Hydrogen infrastructure, for instance, such as hydrogen stations, supply chain network, is important in society of hydrogen economy. Special alloy are frequently used to prevent the hydrogen embrittlement in hydrogen vehicles, semiconductor factories and so on. Because special alloy including Monel material has high strength and high hardness, it is known as the hard-to-cut or roll material. This paper aims to investigate the characteristics and safety on bearing and shaft, which consist of key parts of rolling unit, through structural analysis. As the results, it showed that the bearing was weaker than shaft. Further the bearing was safe up to 20.4 ton, which was about 2 times of maximum of roller reaction force in case of considering as static load. However, the bearing was safe up to 10.2 ton in case of considering as repeated load.
본 논문에서는 1차원 오일러 보 요소(Euler-Bernoulli Beam Element)를 이용한 회전익기 축계에 대한 중량 최적설계를 수행하였다. 회전 축계의 특성을 고려해 비틀림(Torsion)과 베어링과 같은 축지지 강성 및 플랜지(Flange) 질량을 모두 고려하였고, 동적 안전성 확 보를 위해 고유치 해석을 수행하여 임계속도(Critical Speed)와 기어박스로부터 오는 치 변형 가진을 회피할 수 있도록 하였다. 축의 길 이는 고정된 상태에서 두께와 반경을 조절하여 중량 최적화를 수행하였으며, 최적화 과정은 2단계로 나누어 진행하였다. 1단계에서 는 비틀림 강도를 제약조건으로 하여 중량을 최적화한 후 2단계에서는 축계 안정성 확보 기준(Headquarters, U.S. Army Material Command, 1974)에 따라 축의 비틀림 강도에 대한 제약조건을 만족시키며, 축의 1차 모드가 임계속도를 회피할 수 있도록 축 1차모드 와 임계속도의 차이가 최대가 되도록 최적화를 진행하였다. 주어진 1차원 보 요소를 이용하여 최적설계를 한 결과를 3차원 유한요소 모델과 실제 제작된 축게의 시험결과와 비교하여 제안된 방법을 검증하였다.
대부분의 기계는 여러 종류의 금속으로 구성된다. 특히 선박의 축계는 프로펠러 날개의 황동과 스테인리스로 된 축으로 이루 어져 있다. 이 이종금속이 바닷물의 전해액에 들어가면 볼타 전지를 이루고, 기전력이 발생된다. 이 기전력은 축계를 받치고 있는 베어링 과 축을 전기부식 시키는 원인이 된다. 선박에서는 이 부식을 막기 위해 선박에서는 축 접지 시스템을 설치하여 운용하고 있다. 본 연구 는 가변피치 프로펠러의 축기전력을 측정하기 위하여 추진축의 전압과 주기관의 회전수를 동시에 측정하였다. 측정장치는 내셔널인스트 루먼트사의 24bit A/D컨버터를 사용하여 측정하였고, 프로그램은 LabVIEW를 사용하였다. 주기관의 회전수와 축기전력의 발생, 블레이드 각도에 따른 기전력과, 배의 항해 방향에 따른 축기전력을 측정하고 분석하였다.
In this study, analyzed the cause of failure of the cardan shaft for water propulsion of an armored wheeled vehicle. During the development test(DT), the vehicle was deflected to the left on the water. As a result of the confirmation, increasing angular displacement and abrasion of SPIDER(Universal joint) occurred. As a result of a structure analysis and torsion fracture test, cause of failure is not insufficient design and strength deficit of each parts. and as a result of a simulation review of the assembly layout of each part, it was confirmed that excessive rotational vibration occurred. In order to solve this problem, improved the assembly layout of the water propulsion system and the worn SPIDER lubrication. Since there has been no occurrence of the same case between military operations so far, it has been confirmed that the improvement plan is appropriate.
선박 축계를 구성하는 프로펠러축은 엔진출력, 프로펠러 하중 및 편심추력의 영향으로 인해 거동의 양상이 달라져 선미관 후 부베어링의 국부하중 변화를 일으킴으로써 선미관 베어링 손상의 위험을 증가시킨다. 이를 방지하기 위해 수행된 추진축계 정렬연구는 선급강선규칙을 중심으로 주로 축과 지지베어링간의 상대적 경사각과 유막유지를 최적화 하는데 중점을 두어 진행 되어왔다. 그러나 보다 상세한 평가를 통한 추진축계의 안정성 확보를 위해서는 전타와 같은 급격한 선미유동장 변화에 기인한 과도상태를 포함한 동적상태의 고려가 필요하다. 이러한 관점에서, 본 연구는 50,000 DWT 선박을 대상으로 스트레인 게이지법을 이용하여 밸러스트 흘수 상태에서 정격회전수로 운전 중 대표적 동적 과도상태인 우현 전타상태에서의 프로펠러축 거동이 추진축계에 미치는 영향을 분석하였다. 그 결과 변동된 프로펠러 편심추력은 프로펠러축을 일시적으로 강하게 내려 누르는 힘으로 작용하여 선미관 베어링의 국부하중을 증가시켜 축계 안정성에 부정적 영향을 미침을 증명하였다.
연안 해역에서 소형 선박의 프로펠러 고장으로 인한 사고가 지속적으로 발생하고 있다. 특히, 해상부유물(폐그물 및 로프 등)에 의하여 선박 프로펠러가 감기는 사고가 빈번히 일어나고 있다. 선박 프로펠러 감김 사고는 동력 상실로 인한 선박의 운항 지연 및 표류로 인한 1차 사고와 프로펠러에 감긴 로프을 제거하기 위한 잠수 작업등으로 인한 2차 사고의 우려가 있다. 이러한 빈번한 프로펠러 감김 사 고에도 불구하고 문제를 해결할만한 적절한 도구가 없어 선박을 육상으로 인양하여 수리하거나, 잠수부가 직접 선박 아래로 잠수하여 문제를 해결하고 있는 실정이다. 이에 따라, 최근 선박 프로펠러 감김 사고를 예방하기 위해 프로펠러 샤프트에 로프절단장치를 일부 소형 선박에 장착하고 있으나 비교적 높은 설치비용 및 시간이으로 인하여 원활하게 적용되어지지 않는 것으로 판단된다. 본 연구에서는 이러한 문제점을 해결하기 위해 기계톱 원리를 이용한 간단한 구조를 가진 수중절단기 기구 설계 및 제어기 개발을 수행하였다. 수중절단 기의 톱날은 직선왕복동작을 위해 유성기어와 크랭크핀을 사용함으로써 긴 행정을 가질 수 있도록 하였다. 또한 수중절단기는 소형 선박에 비치되어있는 배터리를 이용하여 작동시킬 수 있도록 하였다. 또한, 비전문가인 사용자가 보다 편리하고 안전하게 사용할 수 있도록 역전류 방지 및 속도제어회로를 적용하여 편리성 및 안정성을 확보하였다.