검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 49

        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent progress has been made to establish intestinal organoids for an in vitro model as a potential alternative to an in vivo system in animals. We previously reported a reliable method for the isolation of intestinal crypts from the small intestine and robust three-dimensional (3D) expansion of intestinal organoids (basal-out) in adult bovines. The present study aimed to establish next-generation intestinal organoids for practical applications in disease modeling-based host-pathogen interactions and feed efficiency measurements. In this study, we developed a rapid and convenient method for the efficient generation of intestinal organoids through the modulation of the Wnt signaling pathway and continuous apical-out intestinal organoids. Remarkably, the intestinal epithelium only takes 3-4 days to undergo CHIR (1 µM) treatment as a Wnt activator, which is much shorter than that required for spontaneous differentiation (7 days). Subsequently, we successfully established an apical-out bovine intestinal organoid culture system through suspension culture without Matrigel matrix, indicating an apical-out membrane on the surface. Collectively, these results demonstrate the efficient generation and next-generation of bovine intestinal organoids and will facilitate their potential use for various purposes, such as disease modeling, in the field of animal biotechnology.
        4,000원
        6.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diabetic mellitus (DM) is a carbohydrate metabolic disorder that involves high blood sugar because insulin works abnormally. Type 2 diabetes accounts for most of them. However, diabetes treatments such as GLP-1 and DPP-4 inhibitors commonly caused side effects including gastrointestinal disorders. Grifola frondosa (G. frondosa) revealed various pharmacological effects in recent studies. It has a variety of anti-cancer polysaccharides through host-mediated mechanisms. D-fraction in G. frondosa has apoptotic effects, promoting myeloid cell proliferation and differentiation into granulocytes-macrophages. It has also been shown to reduce the survival rate of breast cancer cells. Though, no further study has been conducted on the specific effects of G. frondosa in the db/db mouse. Therefore, we would like to research the blood glucose improving effect of G. frondosa, a natural material, in type 2 diabetes model mouse, in this study. G. frondosa was administered to the disease model mouse (BKS.Cg-+Leprdb/+Leprdb/OlaHsd) for 8 weeks to monitor weight and blood glucose changes every week. And we evaluated anti-diabetes effects by checking biomarker changes shown through blood. Experiment did not show statistically significant weight differences, but control groups showed significantly higher weight gain than G. frondosa administered groups. We collected blood from the tail veins of the db/db mouse each week. As a result, the lowest blood sugar level was shown in the 500 mg/ kg group of G. frondosa. Glucose in the blood was examined with HBA1c, and 7.8% was shown in the 500 mg/kg administration group, lower than in other groups. These results suggest the potential improvements of diabetes in G. frondosa.
        4,000원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In vitro maturation (IVM) of oocytes is the procedure where the immature oocytes are cultivated in a laboratory until they are mature. Since IVM oocytes generally have low developmental competence as compared to those matured in vivo, development of an optimal IVM culture system by fine-tuning culture conditions is crucial to maintain high quality. In-depth knowledge and a deep understanding of the in vivo physiology of oocyte maturation are pre-requisites to accomplish this. Within ovarian follicles, various signaling pathways that drive oocyte development and maturation regulate interaction between oocytes and surrounding somatic cells. This review discusses the sonic hedgehog (SHH) signaling pathway, which has been demonstrated to be intimately involved in folliculogenesis and oocyte maturation. Advances in elucidating the role of the SHH signaling pathway in oocyte maturation will aid attempts to improve the current inferior in vitro oocyte maturation system.
        4,000원
        8.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Agarum clathratum (A. clathratum) is a marine brown algal species that belongs to the Costariaceae family and has antioxidant and anti-microbial properties. However, the anti-inflammatory effects of A. clathratum and the molecular mechanisms involved have not been determined so far. This study aimed to investigate the anti-inflammatory effects of A. clathratum extracts in THP-1 macrophages stimulated by lipopolysaccharide (LPS) derived from Porphyromonas gingivalis. The THP-1 cells were differentiated with 12-O-tetradecanoylphorbol-13-acetate and treated with A. clathratum before LPS stimulation. Cell viability was assessed using the trypan blue exclusion assay. The expression of pro-inflammatory response-associated molecules was evaluated by quantitative real-time polymerase chain reaction and Western blot analysis. A. clathratum treatment inhibited the expression of interleukin-1β in LPS-stimulated THP-1 macrophages without causing any cytotoxicity. The anti-inflammatory effect of A. clathratum resulted in a significant repression of the JNK/c-Jun signaling axis, a key regulator in inflammation responses. This study highlights the possible role of A. clathratum in the inhibition of pro-inflammatory cytokines via suppression of the JNK/c-Jun signaling axis and suggests that A. clathratum could serve as a marine-derived anti-inflammatory agent in periodontitis.
        4,000원
        9.
        2021.06 구독 인증기관 무료, 개인회원 유료
        Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.
        3,000원
        10.
        2021.03 구독 인증기관 무료, 개인회원 유료
        Periodontal disease is an inflammatory disease that affects the destruction of the bone supporting the tooth and connective tissues surrounding it. Periodontal ligament fibroblasts (PDLFs) induce overexpression of matrix metalloproteinase (MMP) involved in periodontal diseaseʼs inflammatory destruction. Osteoclasts take part in physiological bone remodeling, but they are also involved in bone destruction in many kinds of bone diseases, including osteoporosis and periodontal disease. This study examined the effect of baicalin on proteolytic enzymesʼ production and secretion of inflammatory cytokines in PDLFs and RAW 264.7 cells under the lipopolysaccharide (LPS)-induced inflammatory conditions. Baicalin inhibited the expression of the protein, MMP-1 and MMP-2, without affecting PDLFs’ cell viability, suggesting its possibility because of the inhibition of phosphorylation activation of mitogen-activated protein kinase’s p38, and the signal transduction process of nuclear factor κB (NFκB)-related protein. Also, baicalin reduced the expression of MMP-8 and MMP-9 in RAW 264.7 cells. This reduction is thought to be due to the inhibition of the signal transduction process of NFκB-related proteins affected by inhibiting p65RelA phosphorylation. Also, baicalin inhibited the secretion of nitric oxide and interleukin-6 induced by LPS in RAW 264.7 cells. These results suggest that baicalin inhibits connective tissue destruction in periodontal disease. The inhibition of periodontal tissue destruction may be a therapeutic strategy for treating inflammatory periodontal-diseased patients.
        4,000원
        11.
        2020.12 구독 인증기관 무료, 개인회원 유료
        L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl- 2 family and MAPK/Akt signaling pathways.
        4,000원
        13.
        2019.12 구독 인증기관 무료, 개인회원 유료
        Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.
        4,000원
        14.
        2019.06 구독 인증기관 무료, 개인회원 유료
        Xylitol is well-known to have an anti-caries effect by inhibiting the replication of cariogenic bacteria. In addition, xylitol enhances saliva secretion. However, the precise molecular mechanism of xylitol on saliva secretion is yet to be elucidated. Thus, in this study, we aimed to investigate the stimulatory effect of xylitol on saliva secretion and to further evaluate the involvement of xylitol in muscarinic type 3 receptor (M3R) signaling. For determining these effects, we measured the saliva flow rate following xylitol treatment in healthy individuals and patients with dry mouth. We further tested the effects of xylitol on M3R signaling in human salivary gland (HSG) cells using realtime quantitative reverse-transcriptase polymerase chain reaction, immunoblotting, and immunostaining. Xylitol candy significantly increased the salivary flow rate and intracellular calcium release in HSG cells via the M3R signaling pathway. In addition, the expressions of M3R and aquaporin 5 were induced by xylitol treatment. Lastly, we investigated the distribution of M3R and aquaporin 5 in HSG cells. Xylitol was found to activate M3R, thereby inducing increases in Ca2+ concentration. Stimulation of the muscarinic receptor induced by xylitol activated the internalization of M3R and subsequent trafficking of aquaporin 5. Taken together, these findings suggest a molecular mechanism for secretory effects of xylitol on salivary epithelial cells.
        4,000원
        15.
        2019.04 구독 인증기관·개인회원 무료
        Insulin/IGF signaling (IIS) regulates multiple physiological processes such as larval growth, reproduction, and life span in many organisms including legume pod borer, Maruca vitrata (Lepidoptera: Crambidae). RNA interference of IIS components, insulin receptor (InR) and Forkhead Box O (FOXO), impaired larval growth and female reproduction. To further validate the physiological roles of InR and FOXO, we generated knock-out (KO) mutants using CRISPR/Cas9-mediated genome-editing technology. Both KO mutants exhibited delayed larval growth and reduced pupal and adult body sizes. In conclusion, these results demonstrated the critical role of insulin signaling (IIS) pathway to control M. vitrata growth and development.
        16.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hedgehog (Hh) pathway plays a key role in development from invertebrate to vertebrate. It is known to be involved in cell differentiation, polarity, proliferation, including the development of vertebrate limb and the establishment of flies’ body plan. To investigate how the regulation of Hh pathway affects the development of parthenogenetic murine embryos, the parthenogenetically activated murine embryos were treated with either cyclopamine (Cyc), an antagonist of Hh pathway, or purmorphamine, an agonist of Hh pathway. While Cyc did not affect the blastocyst formation and its total cell number, the chemical reduced the hatching rate of embryos and the expression levels of Fn1 mRNA. The results of the present study show the possibility that Cyc may affect the development of embryos at blastocyst stage by blocking Hh pathway and this may cause detrimental effect to the embryos at peri-, and post-implantation stages.
        4,000원
        17.
        2018.11 구독 인증기관·개인회원 무료
        Sonic hedgehog (Shh) signaling pathway plays a key role in the development of various vertebrate embryos and remains important in adults. Although Shh signaling pathway has widely been studied in post-implantation stage embryos, only few studies are reported about pre-implantation stage embryos. To investigate the effect of Shh on pre-implantation stage embryos, cyclopamine and purmorphamine were treated to embryos in culture. Cyclopamine acts as an antagonist of the hedgehog signaling because it has a high affinity to Smoothened, a key part of the hedgehog signaling pathway. On the other hand, purmorphamine activate Smoothened and acts as a Shh signaling agonist. The oocytes were collected after superovulation and parthenogenetically activated in Chatot, Ziomek, and Bavister medium (CZB) including 10 mM strontium for 5 hr. The activated oocytes were cultured in potassium simplex optimized medium (KSOM), KSOM with 5 uM of cyclopamine, KSOM with 1 uM of purmorphamine, or KSOM with both 5 uM of cyclopamine and 1 uM of purmorphamine. After 5.5 days in culture, there was no significant difference in blastocyst development among the four experimental groups. However, the hatching rate was increased in the groups containing purmorphamine, and the blastocysts of the purmorphamine-containing groups had higher total cell number than those of other two groups when the cells were counted after Hoechst33342 staining. Quantitative real-time PCR (qRT-PCR) shows the difference of gene expression level which are related to epithelial-mesenchymal transition (EMT). Taken together, this study suggests that the increase of Shh has an effect on the increases of EMT-related genes and hatching rate of pre-implantation stage embryos, and this may improve implantation subsequently.
        1 2 3