검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical water splitting presents an optimal approach for generating hydrogen ( H2), a highly promising alternative energy source. Nevertheless, the slow kinetics of the electrochemical oxygen evolution reaction (OER) and the exorbitant cost, limited availability, and susceptibility to oxidation of noble metal-based electrocatalysts have compelled scientists to investigate cost-effective and efficient electrocatalysts. Bimetallic nanostructured materials have been demonstrated to exhibit improved catalytic performances for the oxygen evolution reaction (OER). Herein, we report carbon aerogel (CA) decorated with different molar ratios of Fe and Ni with enhanced OER activity. Microwave irradiation was involved as a novel strategy during the synthesis process. Inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Energy dispersive X-ray spectroscopy (EDAX spectra and EDAX mapping), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HR-TEM), and Selected Area Electron Diffraction (SAED) were used for physical characterizations of as-prepared material. Electrochemical potential towards OER was examined through cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). The FeNi/CA with optimized molar ratios exhibits low overpotential 377 mV at 10 mAcm− 2, smaller Tafel slope (94.5 mV dec− 1), and high turnover frequency (1.09 s− 1 at 300 mV). Other electrocatalytic parameters were also calculated and compared with previously reported OER catalysts. Additionally, chronoamperometric studies confirmed excellent electrochemical stability, as the OER activity shows minimal change even after a stability test lasting 3600 s. Moreover, the bimetallic (Fe and Ni) carbon aerogel exhibits faster catalytic kinetics and higher conductivity than the monometallic (Fe), which was observed through EIS investigation. This research opens up possibilities for utilizing bi- or multi-metallic anchored carbon aerogel with high conductivities and exceptional electrocatalytic performances in electrochemical energy conversion.
        6,000원
        2.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ammonia is a potential fuel for producing and storing hydrogen, but its usage is constrained by the high cost of the noble metal catalysts to decompose NH3. Utilizing non-precious catalysts to decompose ammonia increases its potential for hydrogen production. In this study, carborundum (SiC)-supported cobalt catalysts were prepared by impregnating Co3O4 nanoparticles (NPs) on SiC support. The catalysts were characterized by high-resolution transmission electron microscope, X-ray photoelectron spectroscopy, temperature programmed reduction, etc. The results show that the large specific surface area of SiC can introduce highly distributed Co3O4 NPs onto the surface. The amount of Co in the catalysts has a significant effect on the catalyst structure, particle size and catalytic performances. Due to the interaction of cobalt species with SiC, the 25Co/SiC catalyst provided the optimal ammonia conversion of 73.2% with a space velocity of 30,000 mL gcat −1 h− 1 at 550 °C, corresponding to the hydrogen production rate of 24.6 mmol H2 gcat −1 min− 1. This research presents an opportunity to develop highly active and cost-effective catalysts for hydrogen production via NH3 decomposition.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni–Cr–Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol–gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni–Cr–Al foam without cracks or spallation. The measured compressive yield strengths are 2–3 MPa at room temperature and 1.5–2.2 MPa at 750oC regardless of sample size. The specimens exhibit a weight loss of up to 9–10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.
        4,000원
        4.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by N2-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of N2-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ (23 mmol- CH3OH/(g-Cu·h)) was higher, on Cu loading basis, than that of CZA (9 mmol-CH3OH/ (g-Cu·h)). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.
        4,000원
        5.
        2011.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pt nanoparticle catalysts incorporated on RuO2 nanowire support were successfully synthesized and their electrochemical properties, such as methanol electro-oxidation and electrochemically active surface (EAS) area, were demonstrated for direct methanol fuel cells (DMFCs). After fabricating RuO2 nanowire support via an electrospinning method, two different types of incorporated Pt nanoparticle electrocatalysts were prepared using a precipitation method via the reaction with NaBH4 as a reducing agent. One electrocatalyst was 20 wt% Pt/RuO2, and the other was 40 wt% Pt/RuO2. The structural and electrochemical properties of the Pt nanoparticle electrocatalysts incorporated on electrospun RuO2 nanowire support were investigated using a bright field transmission electron microscopy (bright field TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. The bright field TEM, XRD, and XPS results indicate that Pt nanoparticle electrocatalysts with sizes of approximately 2-4 nm were well incorporated on the electrospun RuO2 nanowire support with a diameter of approximately 50 nm. The cyclic voltammetry results showed that the Pt nanoparticle catalysts incorporated on the electrospun RuO2 nanowire support give superior catalytic activity in the methanol electro-oxidation and a higher electrochemically active surface (EAS) area when compared with the electrospun Pt nanowire electrocatalysts without the RuO2 nanowire support. Therefore, the Pt nanoparticle catalysts incorporated on the electrospun RuO2 nanowire support could be a promising electrode for direct methanol fuel cells (DMFCs).
        4,000원
        6.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanosized Pt, Pt-Ru and Pt-CeO2 electrocatalysts supported on acid-treated carbon nanotube (CNT) were synthesized by microwave-assisted heating of polyol process using H2Cl6Pt·6H2O, RuCl3, CeCl3 precursors, respectively, and were characterized by XRD and TEM. And then the electrochemical activity of methanol oxidation for catalyst/CNT nanocomposite electrodes was investigated. The microwave assisted polyol process produced the nano-sized crystalline catalysts particles on CNT. The size of Pt supported on CNT was 7~12 nm but it decreased to 3~5 nm in which 10wt% sodium acetate was added as a stabilizer during the polyol process. This fine Pt catalyst particles resulted in a higher current density for Pt/CNT electrode. It was also found that 10 nm size of PtRu alloys were formed by polyol process and the onset potential decreased with Ru addition. Cyclic voltammetry analysis revealed that the Pt75Ru25/CNT electrode had the highest electrochemical activity owing to a higher ratio of the forward to reverse anodic peak current. And the chronoamperemetry test showed that Pt75Ru25 catalyst had a good catalyst stability. The activity of Pt was also found to be improved with the addition of CeO2.
        4,000원
        7.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising CH4 using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.
        3,000원
        8.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrocatalytic characteristics of oxygen reduction reaction of the PtxM(1-x) (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The PtxM(1-x)/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the PtxM(1-x) particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and PtxM(1-x)/MWNTs catalysts are seen as FCC, and synthesized PtxM(1-x) crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, Pt0.77Co0.23/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or PtxM(1-x)/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and PtxM(1-x) (M = Co, Cu, Ni) catalysts, the Pt0.77Co0.23/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.
        4,000원
        9.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of La promoter on the carbon deposition and catalytic activity in the synthesis gas production with supported Ni catalysts was investigated. Active component was Ni and support was CeO2 and the promoter used was La. The reaction was carried out in a fixed bed reactor at 1 atm and 650~800℃. The catalysts were prepared by two methods, the impregnation method and urea method. The catalysts prepared by the urea method showed 10 times higher surface area than those of prepared by the impregnation method. By the introduction of La promoter in the catalyst system, carbon deposition was remarkably reduced from 16% to 2%. It appears that the promoter facilitates the formation of a stable fluoride-type phase, which reduces the carbon deposition. The best catalytic activity and CO and H2 selectivities were obtained with 2.5wt% Ni/Ce(La)Ox catalyst at 750℃, giving 90% methane conversion, 93 and.80% of CO and H2 selectivities, respectively.
        4,000원
        10.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at 750~850℃ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and H2 and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best MgNiO2 solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.
        4,000원
        11.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at 750~850℃ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and H2 and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best MgNiO2 solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.
        4,000원
        12.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of H2-N2O titration on the supported Pt catalysts with no calcination indicate a metal dispersion of 0.97±0.1, corresponding to ca. 1.2 nm, while the calcination of 0.65% Pt/SiO2 at 600 and 900℃ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using Pt/TiO2 and Pt/SiO2 catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to 200℃, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at 80~200℃ between samples of 0.65% Pt/SiO2 consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of CO2, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% Pt/SiO2 catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at 120℃ even for 12 h, regardless of the space velocity allowed.
        13.
        2015.05 서비스 종료(열람 제한)
        Most of the commercial SCR technology is very efficient in the temperature range of 250∼350℃. However, the flue gas temperature after waste heat recovery system or wet desulfurization system is in general under 200℃. The performance of SCR system is very poor and there are slip ammonia problem at low temperature. Low temperature SCR technology is necessary to save the flue gas reheating energy and reduce the greenhouse gas emission. The SCR catalyst operating at low temperature has been developed for the new waste flue gas heat recovery system of the existing incinerator. The flue gas temperature is under 170℃ after the flue gas heat recovery. The SCR catalyst is made by key component Mn impregnated on γ-Al2O3 of which the diameter is 1.7mm~2.8mm. The dimension of cylindrical SCR reactor is inside diameter 22.1mm and height 350mm. The effects of reducing agent injection rates, space velocity at different reaction temperature were studied on the De-NOx performance and slip ammonia to get a design data. It was found that the Mn based SCR catalyst is effective in low temperature flue gas without ammonia slip. The outlet concentration of NOx in the flue gas decreased to 12ppm from inlet 150ppm at space velocity 10,000 hr-, NH3/NO = 1 and reaction temperature 170℃. The De-NOx efficiency is 92% at reaction temperature 170℃ which is much higher than 82% at 150℃. At the SCR reaction temperature 170℃, the NOx removal efficiency was 78~99% in the space velocity range 5,000~12,500hr-, and 79~92% at NH3/NO ratio range 0.5~1.0.
        14.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        TiO2- and SiO2-supported Co3O4, Pt and Co3O4-Pt catalysts have been studied for CO and C3H8 oxidations at temperatures less than 250℃ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at 350℃ and reduction at 400℃ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/TiO2 catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported Co3O4-only catalysts are very active for CO oxidation even at 100℃, but the use of TiO2 as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for Co3O4-Pt catalysts. Based on activity profiles of CO oxidation at 100℃ over a physical mixture of supported Pt and Co3O4 after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for C3H8 oxidation at 250℃ with a Pt-exchanged SiO2 catalyst, this study may offer an useful approach to substitute Co3O4 for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.
        15.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        Oxidative TCE decomposition over TiO2-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial TiO2 were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D TiO2 and CrOx would be the respective promising support and active ingredient for the oxidative TCE decomposition. The TiO2-based CrOx catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high CrOx contents for preparing CrOx/TiO2 catalysts might produce Cr2O3 crystallites on the surface of TiO2, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported CrOx-based bimetallic oxide systems offered a very useful approach to lower the CrOx amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.