검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 21

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an experimental analysis of noise reduction in road traffic by applying the Micro Grooving technique to concrete highway pavements is explored. Initiated in 1984 to address the aging and damage issues observed in South Korea's concrete highways, Micro Grooving is known for creating fine grooves on the cement pavement surface to increase friction, prevent hydroplaning, and inhibit ice formation, while reducing vehicle friction noise by 3∼5dB(A). It is determined from noise measurement results that the application of the Micro Grooving method can be expected to reduce roadside noise and enhance the safety of drivers' driving experience.
        4,000원
        2.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The prospect of the highway traffic road construction has led to resistance from residents, partly based on noise and vibration issues. Particularly, as tracks often pass closely to residential dwellings, constructors are then required to take account of noise and vibration. So the prediction of noise and vibration for highway traffic is very important thing. The highway traffic noise and vibration make one specific issue. For the highway traffic road, this paper concerns the noise by the wheel/tire and the structure-borne noise by the road. Based on the results, this paper proposes the source model of highway traffic noise and the calculation model for highway traffic noise. Also prediction model is presented with traffic noise which are calculated by considering the power level of a source for one-third octave band, ground absorption and barrier deflection. A lot of empirical data is needed to predict the noise and vibration. And one of the best ways to control the wayside noise is to analyze the noise level.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Assessment of noise exposed population is to check the environment noise level and social influence in order to reduce the risks such as annoyance and disturbance that are generated by environmental noise. Also, this method suggests the preferential noise abatement policy and action plan by accurately finding the area that the noise causes harmful effect to human health. Recently, a noise map, which can predict noise in comprehensive area, is used for the assessment of noise exposed population, breaking from the methods using existing measures. In particular, countermeasure for noise can be considered more effectively by using assessment methods of noise exposed population for specific noise level, area and building types which are the main input factors in noise maps. In this study, we propose noise prediction at traffic noise due to noise map.
        4,000원
        4.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to create a pleasant environment by exploring ITS technology-based reduction measures to manage vehicles on the road, which are the main cause of traffic noise, while identifying the effects of traffic noise and various noise reduction measures. METHODS : A review of the literature identified the matters discussed mainly by reviewing the pre-examination and related statutes of traffic noise management measures at home and abroad. Furthermore, in the field investigation section, the variables affecting traffic noise (traffic volume, large vehicle mix rate, and driving speed) were investigated and the noise impact was analyzed using the three-dimensional (3D) noise prediction model (SounpdPLAN). RESULTS: The noise impact levels of the 3D noise prediction model were identified from various angles, such as horizontal and vertical, and traffic noise management measures for pre-real-time management and related DB utilization measures were proposed. CONCLUSIONS: Unlike the existing traffic noise management measures, which focus on follow-up management measures, it is believed that further research is needed to develop standards and related guidelines that meet regional characteristics by taking into account the characteristics of traffic noise and creating concrete and drawing action plans that can be used in future policies using ITS technology.
        4,200원
        5.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper presents the noise reduction effect of asphalt concrete pavement using steel slag aggregate. METHODS: Steel slag aggregates induce various mechanical effects because of their high stiffness and specific gravity. It is also known that the noise reduction effect is due to its high specific gravity and porous nature. In this study, the noise reduction in a steel slag asphalt concrete pavement section was measured and analyzed. RESULTS : On average, an asphalt concrete pavement with steel slag reduces road traffic noise by about 2 dB(A). In addition, the analysis of sound pressure levels by frequency showed lower sound pressure levels in steel slag asphalt concrete pavement than general HMA in all frequency ranges (from low to high frequencies). An analysis of the benefits with regard to noise, by assuming a road-traffic noise reduction of 2 dB(A) with asphalt concrete pavement using steel slag, shows that the noise abatement cost approach can save 1.6 million won a year over soundproof wall costs. In addition, the noise damage cost approach results in cost savings (with regard to noise) of between 19 and 60 million won per year depending on the population density. CONCLUSIONS: The use of steel slag aggregate as an asphalt concrete mixture material not only improves the mechanical performance but also has a noise reduction effect. It is expected that the steel slag asphalt concrete pavement can reduce the environmental burden by utilizing resources and provide a safer and more comfortable pavement condition to the road users.
        4,000원
        6.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this thesis is to evaluate the effectiveness of an active noise cancellation (ANC) system in reducing the traffic noise level against frequencies from the predictive model developed by previous research. The predictive model is based on ISO 9613-2 standards using the Noble close proximity (NCPX) method and the pass-by method. This means that the use of these standards is a powerful tool for analyzing the traffic noise level because of the strengths of these methods. Traffic noise analysis was performed based on digital signal processing (DSP) for detecting traffic noise with the pass-by method at the test site. METHODS : There are several analysis methods, which are generally divided into three different types, available to evaluate traffic noise predictive models. The first method uses the classification standard of 12 vehicle types. The second method is based on a standard of four vehicle types. The third method is founded on 5 types of vehicles, which are different from the types used by the second method. This means that the second method not only consolidates 12 vehicle types into only four types, but also that the results of the noise analysis of the total traffic volume are reflected in a comparison analysis of the three types of methods. The constant percent bandwidth (CPB) analysis was used to identify the properties of different frequencies in the frequency analysis. A-weighting was applied to the DSP and to the transformation process from analog to digital signal. The root mean squared error (RMSE) was applied to compare and evaluate the predictive model results of the three analysis methods. RESULTS: The result derived from the third method, based on the classification standard of 5 vehicle types, shows the smallest values of RMSE and max and min error. However, it does not have the reduction properties of a predictive model. To evaluate the predictive model of an ANC system, a reduction analysis of the total sound pressure level (TSPL), dB(A), was conducted. As a result, the analysis based on the third method has the smallest value of RMSE and max error. The effect of traffic noise reduction was the greatest value of the types of analysis in this research. CONCLUSIONS : From the results of the error analysis, the application method for categorizing vehicle types related to the 12-vehicle classification based on previous research is appropriate to the ANC system. However, the performance of a predictive model on an ANC system is up to a value of traffic noise reduction. By the same token, the most appropriate method that influences the maximum reduction effect is found in the third method of traffic analysis. This method has a value of traffic noise reduction of 31.28 dB(A). In conclusion, research for detecting the friction noise between a tire and the road surface for the 12 vehicle types needs to be conducted to authentically demonstrate an ANC system in the Republic of Korea.
        4,000원
        7.
        2013.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Generally, the traffic noise occurring on roads has emerged as an important factor that harms the residential environment. Because of the noise, residents living near roads have been causing civil complaints. Therefore, it is required to evaluate road traffic noise during the whole procedures of building an apartment, ranging from design to construction. And if an evaluated noise exceeds regulation standards, some measures to prevent the noise, such as installation of soundproof walls, and other kinds of plans should be prepared. In this point, this work measured road traffic noise in a site of housing land development, investigated its characteristics, and used a simulation program to predict outdoor noise on the basis of the data about traffic effect evaluation, design drawing, and the data about site measurement. Based on the prediction, it also predicted indoor noise. It is judged that this research will serve as an important material to establish soundproof measures on the basis of prediction of traffic noise in building an apartment.
        4,300원
        8.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to research the influence of road traffic noise by road slope through the analysis of the field road traffic noise and determine consideration of road slope in the case of appling active noise cancellation. METHODS: This study measures vehicle's noise by the NCPX method at the three field sections such as uphill, downhill, and flatland. Total sound pressure and sound pressure level by the 1/3 octave band frequency are calculated through the raw field data. Total sound pressure level is compared by ANOVA test and T test statistically. The results obtained are compared in accordance with the road slope and the progress of the uphill section. RESULTS : The noise characteristic of early, medium, and last parts of uphill was found to be consistent when the vehicle was travelling uphill section. The result of statistical test, it was shown that total sound pressures are not different each other. According to the comparison by the geometry, sound pressure of the uphill section was higher than those of the flatland and downhill section in high frequency band. By the result of statistical test, total sound pressure are different according to geometry in the case of high vehicle speed. In the comparison result by road slope, each sound pressure level was found to be consistent in total frequency. However, total sound pressure proportionally increased according to road slope. CONCLUSIONS: It is found that the effect of road slope on noise generation was little in this experimental sites.
        4,200원
        9.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of study is to understand the characteristic of driving noise from the front and rear tire for effective active noise cancellation application. METHODS : As literature review, noise measurement methods were reviewed. Noise measurement conducted at three kind of section by road slope using CPX(Close Proximity Method). Noise data was compared by total sound pressure level and 1/3 octave band frequency sound pressure level. Also, each section was compared by T-test using SPSS. RESULTS : In the case of the uphill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low and high frequency band. In the case of high slope section of Sangsaek-Ri, the sound pressure level of the front tire was higher than that of the rear tire in high frequency. Also, in the case of the downhill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low frequency band. However, the sound pressure levels of both the front and rear tires were approximately the same in the high slope section of Sangsaek-Ri. The result of T-test showed that total sound pressures of the front and rear tires were not different from each other in the case of high slope and high speed. CONCLUSIONS: Road slope was not an important variable for effective active noise cancellation.
        4,000원
        10.
        2013.08 구독 인증기관 무료, 개인회원 유료
        The objective of this paper is to compare the site-to-site variability of ISO 10844 pass by the noise test sites. In order to investigate the site-to-site variance of test surfaces, European commercial tires are tested at seven different test sites. Three Korea test sites and four Europe test sites are selected. The pass by noise test is done according to a 2001/43/EC regulation. Although the ISO surface has a very specific track composition, it does not reduce the variation of pass by noise measurements over the surface of test sites. This paper shows that the test results of pass by noise level are different depending on the test sites. The correlation obtained in this work is able to predict the pass by noise level for certain test site using the data measured from another test site. The prediction value is range with an error within 1 dB(A).
        3,000원
        11.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study presents the noise level and frequency characteristics investigated in the national highways with the consideration of various measuring conditions and/or methods. METHODS : The noise levels on the asphalt concrete pavement(ACP) and the jointed plain concrete pavement(JPCP) of the national highway were measured and analysed with respect to three variables, i.e., pavement type, surface condition, and measurement distance. The PASS-By method is utilized for the noise measurement and then using CPB spectrum analysis method with 1/3 octave bandwidth, the noise levels and frequency characteristics were calculated for two-second periods before and after the peak noise. RESULTS : Depending on the pavement type, the noise level was changed as the average noise levels are 73.3dB(A) and 78.3dB(A) for ACP and JPCP, respectively. With respect to the effect of surface condition, the average noise levels for crack H(high), M(medium), and L (low) sections are 77.4dB(A), 77.4dB(A), and 78.1dB(A), respectively. Regarding the measurement distance, 1.2meter difference in measuring location reduces 1.6dB(A) of noise level; the average noise levels at 5.3m and 7.5m from the centerline of outer lane are 72.8dB(A) and 71.2dB(A), respectively. It should be noted that the noise levels are slightly different as a function of vehicle speed and type. However, the overall trends for each case was similar. It was found that the domain frequency bands for ACP and JPCP were 400Hz~2000Hz and 500Hz~2000Hz, respectively. CONCLUSIONS : Based on the analysis with the measured noise date from national highway, it was concluded that the noise level and frequency band vary depending on the various conditions. It was also found that some variables significantly affect the noise level while others do not. With further systematic investigation, the comprehensive noise characteristics on the national highway can be achieved. Using such database, it is possible to develop the fundamental noise reduction technology.
        4,000원
        14.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 실시간으로 개별 차량에 대한 소음 예측 시뮬레이션을 통해 매 순간 소음지도와 Lmax, Lmin 등을 얻을 수 있는 소음 예측 모델을 제시하였다. GIS 지형처리 기법을 이용해 공간 모델 처리 기법을 바탕으로 실시간 교통소음예측 시스템 모델을 제안하고, 객체지향기법을 이용해 개발하였다. 실시간 소음 시뮬레이션 모델을 이용하여 교통 흐름의 변화에 따라 소음레벨, 소음지도 변화, Lmin, Lmax값을 한눈에 파악하거나 비교할 수 있다. 현장에서 수행한 소음측정치와 예측치를 비교한 결과, 대부분 거리에서 Leq는 2~3db, Lmax는 3~4db 이내의 차이를 나타내어 소음예측의 신뢰성이 양호함을 확인할 수 있었다. 개발된 시스템을 이용해 민감도 분석을 수행한 결과, 대형차 비율, 차량 속도, 방음벽 높이에 따라 소음레벨의 차이를 보였고, 특히 방음벽 높이는 Leq나 Lmin보다 Lmax에 큰 영향을 미치는 것을 알 수 있었다.
        4,000원
        15.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고속도로 이용차량의 증가와 함께 차량의 대형화와 고속화로 인해 고속도로 교통 소음레벨이 높아지고 있으며 저소음 포장노면 및 방음시설 설치 요청도 급격하게 증가하고 있다. 따라서 고속도로 교통소음으로 인한 민원예방과 함께 효율적이고 경제적인 소음저감 대책을 수립하기 위해서는 정확한 소음 예측 기술 마련이 필요하다. 본 연구에서는 시험도로에 포설된 다양한 포장노면에 대해서 CPX(Close Proximity Test) 및 Pass-by 소음 계측 방법을 혼용한 소음 계측 데이터를 이용하였고 차종별 단독 주행 시험을 실시하여 차량 및 노면별 음향파워레벨 산정식이 마련된 데이터를 이용하였다. 아울러, 상기 산정식의 정확성을 검증하기 위하여 고속도로 12개 지점에 대한 총 38회의 소음 계측한 데이터를 이용하여 해당 지점에 대한 소음 예측 모델을 구성하여 측정값과 예측값을 비교 평가하였다. 최종적으로 3차원 GUI 기능을 지원하는 도로교통 소음 예측 프로그램 KRON(Korea Road Noise)을 개발하였다. 이와 더불어 각 포장형태별 및 차종별에 따른 소음특성을 분석하였다.
        4,000원
        16.
        2009.04 KCI 등재 서비스 종료(열람 제한)
        In this research, we measured the number of lanes, distance, disposition of apartment that are affecting the road traffic noise to evaluate the current condition of G city’s road traffic noise. We decide on a basis regarding an apartment price formation factor, and the apartment current price and the results that compared. To have a point scale, we set the maximum road traffic noise at a 8 lane road for 5 points, give 4 points for a 6 lane road, which has a 2.1~2.5 dB(A) difference compared to a 8 lane road, give 3 points for a 4 lane road, which has a 5.2~5.5 dB(A) difference compared to a 8 lane road, and set 2 points for a 2 lane road and lower. If we set the standard floor plan as horizontal and a living room facing the roadside, the horizontal and living room facing the opposite side of the road is 1 point because it differs by 14.1 dB(A), and the vertical is 3 points since the difference is 5.3 dB(A). If we make grades by the distance, making standard the fifth floor with little soundproof effect from apartment to road, we observe a measurement below 2.9 dB(A) at a distance of less than 10 m and 5 dB(A), decreased at a distance of 20 m. Therefore, 4 points were given for less than 10m, 3 points for 10~20 m, 2 points for more than 20 m as we can apply the effect of a decay distance of line sound source and the decrease in noise effects of more than 6 dB(A), 1 point for more than 40m, and 0 points for more that 80 m since it is negligible. 28 apartments got 0 points because there is no effect of road traffic noise from other apartments, and 50 apartments where only the road at one side effect them got 5~10 points. 4 apartments (17-2, 6-3, 10-4, 3-3) received over 20 points. 15 cases showed a difference between developer price and resale price, and 11 cases (73%) among them showed the same trend (price increases with a low road traffic noise restriction factor point) with the point of road traffic noise restriction factor. 4 cases demonstrated the opposite trend, showing price increases with a high restriction factor point. Among the 4 cases, case numbers 2,6 and 9 appear to be more affected by the location factor (business district) than the road traffic noise restriction factor, and case number 1 appears to be affected by the building factor (openness and direction).
        17.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        This research helps you understand the road traffic noise levels by using a noise map. We have observed the change of the road traffic noise levels around 07:00~08:30 and 22:00~23:00 using the noise map in the city. The road traffic noise level is very high both at noon and at night around a beltway and an interchange that is linked with a highway. It seems that the main route of so many vehicles, which are at neighboring cities such as N city and D and H districts and which avoid traffic jams in the city, is the beltway and interchange. The road traffic noise level of a nearby express bus terminal, railroad station, and airport is more than 75 dB at noon and 65 dB at night. The road traffic noise level of G city at night is observed to be more than 55 dB. The noise levels of a residence area and a university are higher than a road with high noise levels when the commuters drive to work. The end of the day exceeds 11 o'clock because of a culture level of development that arouses spare time, eating out, adults' drinking culture, nightlife of the youth, etc. Therefore, the road traffic noise level is high during late night hours, and it exceeds regulatory guidelines (55 dB(A)). It also damages the residence area that is located near the road.
        18.
        2007.10 KCI 등재 서비스 종료(열람 제한)
        This paper represents the statistical characteristics of sources and receptors for road traffic noise in apartment complex. Also we suggested that the site-specific characteristics of vertical and horizontal distributions in the complex apartment have been derived using a different analysis for evaluating levels of Leq1h by the apartment floor at a given distance from a road in terms of the flow rate, the mean speed of the traffic, and the percentage of the type vehicles in the day and night periods. As a result, the contribution orders of traffic quantity by the type of vehicles showed as followed: light vehicle>medium vehicle>heavy vehicle>motorcycle. Especially, the mixing ratio of entering the road on the heavy vehicle in the daytime was two times higher than that of in the night. The speed in all types of vehicle is in the range of 41 and 81 km/hr and noise level was not significantly different in day and night-time. The sources of road traffic noise had different variations and uncertainties using a random variable and probability distribution. The sound distribution to receptors by the apartment floor showed S curve between 1st floor and 15th floor With the normality test, the normal distributions using Anderson-Darling Test followed 1st, 3th, 13th and 15th floor in the daytime and all floors except 7th floor in the night (p>0.05). And also, the value of the pearson correlation coefficient (r) obtained in this study have significantly different at the range of floor. In conclusion, the results suggested that the distribution characteristics of levels of Leq1h on the sources and receptors of road traffic noise in apartment complex must be improved and developed on the guideline of regulation of road traffic noise.
        19.
        2007.07 KCI 등재 서비스 종료(열람 제한)
        This study has been conducted to achieve the following objectives: First, in order to understand the horizontal propagation and attenuation characteristics for the railroad traffic noise, we selected areas within 100 meters away from the railroad and then selected Saemaul-ho and Mugoongwha-ho as the subjects for our experiment. In this way, we analyzed the horizontal propagation and attenuation characteristics for the traffic noise occurring in diversified areas. Second, in order to understand the vertical propagation and attenuation characteristics for the railroad traffic noise, we measured and analyzed the distributional characteristics of vertical sound pressure levels on each floor of multi-storied apartment buildings according to changes of traffic load and types, and the existence or nonexistence of soundproof walls. For the case of the railroad traffic noise, we also selected Samaul-ho and Mugoongwha-ho as the subjects for our experiment, and we measured and analyzed the different noise levels on each floor of multi-storied apartment buildings from the soundproof wall. The results of Horizontal propagation and attenuation characteristics for the railroad traffic noise are as follows: In cases of the flat land, cutting land, and bridge area, as distance increases, the sound pressure level steadily decreases. The sound pressure level for the bridge area is higher than that of the flat land with a measurement of 5.5∼10.2 dB(A). Vertical propagation and attenuation characteristics for the railroad traffic noise are as follows: The amount of sound pressure level decrease is 14.2∼14.8 dB(A) for Samaul-ho and 13.5∼14.3 dB(A) for Mugoongwha-ho when measuring the vertical sound pressure levels at heights lower than 4.5 m, which indicates a fairly large decrease. At 6 m, the amount of decrease is 8.6 dB(A) for Samaul-ho and 8.2 dB(A) for Mugoongwha-ho, which indicates a small decrease.
        20.
        2007.07 KCI 등재 서비스 종료(열람 제한)
        Traffic noise is a kind of noise caused by cars, trains and aircraft. Among them, noise produced by cars is the most important factor in cities. According to the National Institute of Environmental Research(NIER)'s survey, Road traffic noise levels in Busan are the highest of all the cities in Korea. So, appropriate measures for road traffic noise reduction is required. For this purpose, the construction of a noise map in Busan will play a vital role. However, road traffic noise formulas are constructed considering regional characteristics such as each country road's environment and vehicle quality. Therefore, prior to constructing a noise map in Busan, examination processes about each formula constituent status and estimation process are required preferentially. In this research, the basic first stage is to estimate Busan's road traffic noise. First, investigate characteristics of each road traffic noise estimate and using this, a noise map is constructed for road traffic noise in Busan. Then the adaptation of a road traffic noise formula is evaluated.
        1 2