Ganggyeong, a city which is located at riverside of Geum River, played a role to connect the inland cities and the coastal cities through the Geum river waterway. In Chosun dynasty, Ganggyeong was one of the three major markets in Korea, and at the same time, it was one of the two river docks in Korea. However, after the railway was installed in Korea, railroad was more important than waterway in transporting logistics and in 1911 Honam railroad and Ganggyeong railway station was installed. Thus it was necessary to reorganize urban structure of Ganggyeong city from the traditional river-dock city to modern railroad city. In addition, urban infrastructure to prevent flood damage was needed because Ganggyeong suffered from floods and water shortages every year. Therefore, between 1910s and 1930s large-scale social infrastructures including road, water and sewage system, river bank, floodgate was constructed not only to revitalize the declining city but also to prevent flood damage and water shortages that hinder urban development. The installation of urban infrastructure has enabled the urban expansion and development of Ganggyeong city, and it is still served as a basic urban structure.
The purpose of this study is to propose the methodology for introducing green infrastructure that can improve the health of citizens by promoting walkability. The methodology is composed of the following three phases: classification of the types of green spaces, selection of core green spaces with two separate analyses, and introduction of the framework of green infrastructure to promote walkability. In the first phase, the classification of the types of green spaces was carried out in order to understand existing distribution pattern of green spaces in study site. In the second phase, walkable blocks were selected by such methods as walkability value. Through these two analyses, all the blocks were divided into three groups according to the ranking figured up the second analyses' results. The blocks in the first group, the group involved in the top 30% and having the greatest ranking, were defined as walkable blocks. In the last phase, a basic frame of the green infrastructure in study site was introduced by connecting the walkable blocks with using other blocks and the green spaces over 1ha. In case study, 28 important green spaces and 35 walkable blocks were selected through the two analysis process. Then, the basic framework of green infrastructure based on the selected 28 important green spaces and 35 walkable blocks was introduced. The methodology applied to this study can be used to get the best selections of the proper green infrastructure in accordance with the purpose of the ecological and recreational local development. In particular, this study will suggest a specific analysis model to use for the ecological and walkable urban planning with green spaces existing in the city.
The purpose of this study was to analyze examples of green infrastructure presented by the American Society of Landscape Architects as a part of basic research to assess hub green spaces in cities. With the specific goal of green infrasturcture in mind, the study samples were classified according to their purpose: ‘humanities’, ‘hydrology’, ‘ecology’, and ‘environment’. Based on this we assessed the elements of planning for the target sites and obtained the following results. With regard to the aspect of humanities, planning urban hub green spaces was related to the satisfaction in leisure activities and the ‘quality of life’ that people expect to enjoy at parks or other green areas in general. Rather than focusing on direct and visible benefits, which might come from green infrastructure’s technological elements, people hoped that parks and green areas have macroscopic values. For hydrological characteristics, the ‘ecologically manages stormwater’ was applied the most in planning hub green spaces in cities, and it mainly took the form of technological elements or factors. Third, the planning elements pertaining to ecological characteristics were identified as a combination of strategies and technological elements that ‘reintroduces native plants’ and ‘habitat for wildlife’. As for the plans to instill eco-friendly aspects, the study found that the research on air, climate, weather, heat reaction, soil, energy efficiency, and use and application of resources is important. However, it was difficult to measure the potential quantitative benefits of ‘reusing or recycling materials’, ‘reducing urban heat’, and ‘cooling air temperature’. The result of this study is meaningful in that it can be used for the assessment of urban hub green spaces in the future.
This paper proposes a process to predict the maintenance cost for the aging urban infrastructure and to manage the facilities reasonably by establishing the budget execution plan based on prediction. It is anticipated that preemptive maintenance will be possible through this, and it will be expected that the average performance grade of the facility will be improved and the management cost will be reduced through longevity improvement.
현재 재난재해와 관련된 연구는 태풍, 홍수, 지진, 교통사고 등, 단일 대상 재난기술을 중심으로 투자 및 개발이 이루어지고 있다. 하지만 미국의 경우 9/11 사태 이후 국가의 핵심 사회기반시설(인프라)에 관해 위험 분석과 관리를 목표하는 연구 센터인 NISAC 설립등 재난재해와 관련하여 패러다임의 전환을 지원하고 있다. 기존의 패러다임은 재난을 일으키는 직접적인 요인이 되는 개별 사건(홍수, 사고 등)의 관점에서 접근하고 있으며 이는 개별 사건이 미치는 물리적, 인적, 사회적, 경제적 파급효과를 반영하기에는 미흡한 점이 있어 파급효과를 제대로 반영할 수 있는 재난 대비 및 대응이 요구된다. 본 연구는 이러한 맥락에서 국가 전반을 구성하는 주요 물리적, 인적, 사회적 기반체계에 대한 위험분석 및 상호연동 통합 플랫폼으로 구성된 국가 통합 안전관리 체계를 개발하고자 한다. 이는 국가 기반체계의 위험관리에 활용되는 동시에, 개별재난을 시스템적 관점에서 분석하여 정부 부처별 관리 대응하는 개별 재난 뿐 아니라 미래 재난 및 복합 재난 등에 관한 국가 및 지역 레벨의 안전관리 의사경정체계를 구축함에 기여한다. 이를 통해 국가 라이프라이(lifeline)에 해당하는 전력, 교통, 도시 인프라 등 국가주요 기반체계 별 재해재난 위험관리 모델링 및 시뮬레이션 모듈을 구축할 수 있으며, 다각적이고 유기적인 안전관리 기술 개발을 통해 개별적 안전관리를 통합하고 복합재난에 대응하여 국가적 안전도 향상을 기대할 수 있다.