간행물

한국방사성폐기물학회 학술논문요약집 Abstracts of Proceedings of the Korean Radioactive Wasts Society

권호리스트/논문검색
이 간행물 논문 검색

권호

2023 춘계학술논문요약집 (2023년 5월) 412

261.
2023.05 구독 인증기관·개인회원 무료
The type of radioactive waste that may occur in the process of nuclear power plant dismantling can be classified into solid, liquid, gas, and mixed waste. In addition, according to the level of radioactivity, it can be divided into high level, intermediate level, low level, and clearance level waste. In the case of solid radioactive waste, it is necessary to secure disposal suitability in order to deliver it to a disposal facility, so safe and efficient treatment of a large amount of radioactive waste generated during decommissioning is one of the most important issues. For the treatment of radioactive waste generated during decommissioning, technologies in various fields such as cutting, decontamination, melting, measurement, and packaging are required. Therefore, this study intends to present and application plan for decommissioning domestic nuclear power plants through overseas case studies for the treatment of radioactive waste expected to occur during nuclear power plant decommissioning.
262.
2023.05 구독 인증기관·개인회원 무료
Radioactive contaminants, such as 137Cs, are a significant concern for long-term storage of nuclear waste. Migration and retention of these contaminants in various environmental media can pose a risk to the surrounding environment. The distribution coefficient (Kd) is a critical parameter for assessing the behavior of these contaminants and can introduce significant errors in predicting migration and remediation options. Accurate prediction of Kd values is essential to assess the behavior of radioactive contaminants and to ensure environmental safety. In this study, we present machine learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict Kd values for Cs in soils. We used three different machine learning models, namely the random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN), to predict Kd values. The models were trained on 14 input variables from the JAEA-SDB, including factors such as Cs concentration, solid phase properties, and solution conditions which are preprocessed by normalization and log transformation. We evaluated the performance of our models using the coefficient of determination (R2) value. The RF, ANN, and CNN models achieved R2 values of over 0.97, 0.86, and 0.88, respectively. Additionally, we analyzed the variable importance of RF using out-of-bag (OOB) and CNN with an attention module. Our results showed that the initial radionuclide concentration and properties of solid phase were important variables for Kd prediction. Our machine learning models provide accurate predictions of Kd values for different soil conditions. The Kd values predicted by our models can be used to assess the behavior of radioactive contaminants in various environmental media. This can help in predicting the potential migration and retention of contaminants in soils and the selection of appropriate site remediation options. Our study provides a reliable and efficient method for predicting Kd values that can be used in environmental risk assessment and waste management.
263.
2023.05 구독 인증기관·개인회원 무료
KAERI has been developing a new decontamination process that does not contain any organic chemicals in the decontamination solution and minimizes the use of ion exchange resin in the solution as a purifying step. The process is hydrazine based reductive metal ion decontamination for decommissioning (HyBRID) and consists of N2H4, H2SO4 and Cu+ ions. The primary system of the LWR is composed of materials with high corrosion resistance, such as stainless steel and Inconel, but among the materials, the feeder and header of the primary system of the PHWR are composed of carbon steel (SA106Gr.B) with low corrosion resistance. Therefore, when decontamination of PHWRs, attention should be paid to corrosion of carbon steel. Since Fe3O4, a contaminating oxide film formed on the surface of carbon steel dissolves faster than ferrite or chromite formed on the surface of Inconel or stainless steel, the base material is exposed to the solution and is corroded during decontamination. When a large amount of iron ions is eluted into the decontamination agent due to corrosion of carbon steel, not only the soundness of the base metal is adversely affected, but also the amount of decontamination waste increases. The purpose of this study is to develop inhibitors that can minimize corrosion of carbon steel when decontamination of PHWRs using the HyBRID decontamination process. CG, 570S and PP3 were selected as corrosion inhibitors. In addition, corrosion tests of carbon steel were conducted in the HyBRID solution with corrosion inhibitors. The best corrosion inhibitors and optimal operating conditions were selected, and HyBRID decontamination agents with corrosion inhibitors were much better in corrosion resistance than existing commercial decontamination agents.
264.
2023.05 구독 인증기관·개인회원 무료
Kori Unit 1 is about 600MW Pressurized Light Water Reactor as WH type. KHNP got an approval for construction and operation of Kori unit 1 on May 31, 1972 and started commercial operation from Apr. 29, 1987. And then, it was decided to permanently suspend it on Jun. 18, 2017 after 40 years of commercial operation. The Nuclear Safety Act stipulates that if a commercial nuclear power plant is permanently suspended, the utility must submit a Final Decommissioning Plan (FDP) within 5 years. So, KHNP, the utility, developed a FDP for Kori Unit 1 and submitted it to the government in May 2021. In South Korea, the FDP is to be prepared in accordance with the relevant notices and consists of 11 major chapters such as (1) Decommissioning Plan Overview, (2) Project management, (3) Status of Site and Environmental, (4) Decommissioning Strategies and Method, (5) Ease of Decom. Design characteristic, (6) Safety Analysis, (7) Radiation Protection, (8) Decontamination and Dismantling, (9) Radioactive Waste Management, (10) Environmental Impact Analysis, (11) Fire Protection and (12, 13) Etc., References and Glossary. KHNP has prepared a strategy and system consisting of three areas such as R&D, Engineering and licensing document development to prepare the final decommissioning plan for Kori Unit 1. The promotion system for the preparation of the FDP for Kori Unit 1 is composed of Engineering (HAS Characterization, Dismantling Safety Evaluation, Radiological Environmental Report, Radioactive Waste Treatment and Facility Construction), R&D(KHNP R&D Results such as Process/Work Package /Cost Estimation, Safety Analysis, Contamination and Exposure, Guide for Detailed Characteristic, Site Safety Analysis, RV & RVI Dismantling Process, etc.), Overseas case lessons learned(Taiwan unit 1 NPP FDP and Spain Zorita NPP FDP analysis) and Development of Licensing Document. KHNP completed the initial completion of the Final Decommissioning Plan for Kori Unit 1 in March 2020 and carried out collecting residents’ opinions through public hearings. And then, KHNP supplemented the results of the residents’ opinions and applied for license to the Nuclear Safety and Security Commission in May, 2021. Now, KHNP are responding to the FDP licensing review.
265.
2023.05 구독 인증기관·개인회원 무료
Wolsong Unit 1 is about 679 MW Pressurized Heavy Water Reactor (PHWR). Canada AECL was responsible for Nuclear Steam Supply System (NSSS) design and supply. Wolsong Unit 1 was operated from 1983 to 2019. Currently, Wolsong Unit 1 is under safety management after permanent shutdown. Wolsong unit 1, a heavy water reactor, has the following characteristics. • Unlike Light Water Reactor, vertical reactors, Heavy Water Reactor is installed horizontally. • The internal structure of the reactor is more complex than that of a light water reactor (380 pressure tubes in reactor as called Calandria) • The Calandria Vault, a large concrete structure filled with light water, is located outside of Calandria In the case of the decommissioning plan of PHWR in Canada, they have adopted a deferred decommissioning strategy that decommissioning begins after permanent shutdown and long-term safety management (30 to 40 years). So, Decommissioning of PHWR in Canada is expected to start in the 2050s. Nuclear Safety Act stipulates that if a commercial nuclear power plant is permanently suspended, the utility must submit a Final Decommissioning Plan (FDP) within 5 years. So, KHNP, the utility, is developing the FDP for Wolsong Unit 1 and have a plan to submit it to the government by the end of 2024. And then licensing review is expected to take at least two years. The key milestone for decommissioning project has a plan to start decommissioning in 2027 and complete it by 2034, but this is flexible depending of the government’s approval for decommissioning and the completion of prerequisites such as spent fuel transfer, etc. KHNP has prepared a strategy and system consisting of three areas such as R&D, Engineering and licensing document development to prepare the final decommissioning plan for Wolsong Unit 1. The promotion system for the preparation of the FDP for Wolsong Unit 1 is consisted of Engineering (HAS Characterization, Process/Work Package/Cost Estimation, Dismantling Safety Evaluation, Radiological Environmental Report, Radioactive Waste Treatment and Facility Construction), R&D (COG cooperation, KHNP R&D Results), Kori unit 1 lessons learned, etc. KHNP have the plan that the FDP Draft development by the end of 2023, reflecting engineering services results, R&D results, COG technical cooperation results and lessoned learned on Kori Unit 1. After collecting opinions from residents through a public hearing, the FDP will be submitted to the government by the end of 2024. It is expected that there will be many difficulties in the development process as it is the world’s first FDP development for the commercial Pressurized Heavy Water Reactors.
266.
2023.05 구독 인증기관·개인회원 무료
Metal waste generated during the dismantling of a nuclear power plant can be contaminated with radionuclides. In general, the internal structure is very complex. Thus, metal waste requires various cutting processes. When metal waste is cut, aerosols are generated. Aerosols are generally various particles of very small size suspended in the working area and remain for a considerable period. This may cause internal exposure of workers due to inhalation of radioactive aerosols generated when cutting radioactive metal waste. This study investigated various cutting processes and the size distribution of aerosols generated during the cutting process. The cutting process is normally classified into thermal cutting, mechanical cutting, and laser cutting. Thermal cutting includes plasma, flame, and oxygen cutting. Mechanical cutting includes mechanical saws, cutters, nibblers, and abrasive water jets. Stainless steel, carbon steel, aluminum, and copper are commonly used as cutting materials in nuclear power plants. The size of the aerosol generated from cutting showed a very diverse distribution depending on the cutting methods and cutting materials. In general, aerosol size is distributed within 0.1-1 μm. This size distribution is different from the 5 μm aerosol size suggested by the ICRP Publication 66 Lung model. These results show that it is necessary to conduct further studies on the size of aerosols generated when decommissioning nuclear power plants.
267.
2023.05 구독 인증기관·개인회원 무료
Laser scabbling has the potential to be a valuable technique capable of effectively decontaminating highly radioactive concrete surface at nuclear decommissioning sites. Laser scabbling tool using an optical fiber has a merits of remote operation at a long range, which provides further safety for workers at nuclear decommissioning sites. Furthermore, there is no reaction force and low secondary waste generation, which reduces waste disposal costs. In this study, an integrated decontamination system with laser scabbling tool was employed to test the removal performance of the concrete surface. The integrated decontamination system consisted of a fiber laser, remote controllable mobile cart, and a debris collector device. The mobile cart controlled the translation speed and position of the optical head coupled with 20 m long process fiber. A 5 kW high-powered laser beam emitted from the optical head impacted the concrete block with dimensions of 300 mm × 300 mm × 80 mm to induce explosive spalling on its surface. The concrete debris generated from the spalling process were collected along the flexible tube connected with collector device. We used a three-dimensional scanner device to measure the removed volume and depth profile.
268.
2023.05 구독 인증기관·개인회원 무료
It is reported that 48 pressurized heavy water reactors (PHWRs) are in operation, and 10 PHWRs including Wolsong-1 NPP have been permanently shut down in the world. In the case of PHWRs, which have been permanently ceased, they are managed through the delayed decommissioning method, but there are no cases of dismantling. Therefore, technology development is urgent for the effective decommissioning of PHWRs. Unlike PWRs, PHWRs are separated into coolant system and moderator system. Most of pipes and systems of coolant system are mainly composed of carbon steel, expect of the steam generator tubes which are composed of nickel alloy. On the other hand, the moderator system is composed of stainless steel. In the case of stainless steel, the inner layer of the oxide film is composed of chromium oxide, and the outer layer is composed of iron and nickel oxide in enriched. To remove two oxide layers, it is needs to different decontamination method, the coolant system can perform the system decontamination process through a reduction process, but in the case of the moderator system, the oxidation/reduction process is required because it has a material and oxide film similar to PWRs. In this study, this is evaluated the oxide film removal rate according to the type of stainless steel and temperature in order to remove the oxide film deposited in the moderator system. The experiments were carried out at temperatures of 60, 70, 80 and 90°C, with a concentration of 200 ppm of permanganic acid and nitric acid, and 2,000 ppm of oxalic acid, respectively. The results of the oxide film removal rate test for SUS304 showed 29% at 60°C, 38% at 70 and 80°C, and 41% at 90°C. For SUS403, the oxide film removal rate experiment results showed 62% at 60°C, 85% at 70°C, 94% at 80°C, over 99% at 90°C. The results showed that the removal efficiency of the oxide film increased as the temperature increased. Following the results of experimental, the optimum temperature of oxide removal in composed of the stainless steel material is to be 90°C for decontamination of PHWR.
269.
2023.05 구독 인증기관·개인회원 무료
Radioactive products generated by long-term operation at NPP can become deposited on the surfaces of the system and equipment, leading to radiation exposure for workers during the decommissioning process. Chemical decontamination is one of the methods to reduce radiation exposure of workers, and there are HP CORD UV, CITROX, CAN-DECON. In the chemical decontamination process, organic acids are generally used, and representative organic acids include oxalic acid and citric acid. There are various methods for removing residual organic acid in decontamination liquid waste, such as using an oxidizing agent and an ion exchange methods. However, there is a problem in that oxidizing agent is used excessively or secondary wastes are generated in excess during organic waste treatment. However, when organic acid is decomposed using a UV lamp, the amount of secondary waste is reduced because it tis decomposed into CO2 and H2O. In this study, organic acid decomposition was evaluated as the contact time of the UV lamp. The experimental equipment consists of a UV reactor, a mixing tank, a circulation pump. The experimental conditions involved preparing 60 L of organic liquid waste containing oxalic acid, hydrogen peroxide and iron chloride. Test A was conducted using one UV reactor, and Test B was performed by connecting two UV reactors in series. As a result of the experiment, a decomposition rate of over 95% was shown after one hour for oxalic acid, and it was confirmed that the initial decomposition rate was faster as the contact time increases. Therefore, in order to increase the initial decomposition rate, it is necessary to increase the contact time of the UV lamp by connecting the UV reactors in series.
270.
2023.05 구독 인증기관·개인회원 무료
The mobility of radionuclides is largely determined by their radiological properties, geochemical conditions, and adsorption reactions, such as surface adsorption, chemical precipitation, and ion exchange. To evaluate the safety assessments of radionuclides in nuclear sites, it is essential to understand the behavior and mechanism of radionuclides onto soils. Since nuclear power plants are located in coastal areas, the chemical composition of groundwater can vary depending on the intrusion of seawater, altering the adsorption distribution coefficient (Kd) values of radionuclides. This study examines the impact of seawater on the Kd values of clay minerals for cesium (Cs) and strontium (Sr). The results of Cs+ adsorption experiments showed a broad range of Kd values from 36 to 1,820 mL/g at an initial concentration of 1 mg/L and a high sorption coefficient of 15-613 mL/g at an initial concentration of 10 mg/L. Montmorillonite, hydrobiotite, illite, and kaolinite were ranked in terms of their CEC values for Cs+ adsorption, with hydrobiotite having the highest adsorption at 1 mg/L. The results of Sr adsorption experiments showed a wide range of Kd values from 82 to 1,209 mL/g at an initial concentration of 1 mg/L and a lower adsorption coefficient of 6.68-344 mL/g at an initial concentration of 10 mg/L. Both Cs+ and Sr2+ demonstrated lower Kd values at higher initial concentrations. CEC of clays found to have a significant impact on Sr2+ Kd values. Ca2+ ions showed a significant impact on Sr2+ adsorption distribution coefficients, demonstrating the greater impact of seawater on Sr2+ compared to Cs+. These findings can inform future safety assessments of radionuclides in nuclear sites.
271.
2023.05 구독 인증기관·개인회원 무료
The physicochemical similarities of hydrogen isotopes have made their separation a challenging task. Conventional methods such as cryogenic distillation, Girdler sulfide process, chromatography, and thermal cycling absorption have low separation factors and are energy-intensive. To overcome these limitations, research has focused on kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS) effects for selective separation of hydrogen isotopes. Porous materials such as metal-organic frameworks (MOF), covalent organic frameworks (COF), zeolites, carbon, and organic cages have been studied for hydrogen separation. This study have the literature review for previous research on D2/H2 adsorption and analyzes the D2/H2 adsorption behaviors of hydrogen isotopes for various zeolite using BET at 77 K. The study predicts the D2/H2 adsorption selectivity based on the results obtained with BET. These hydrogen isotope adsorption fundamentals provide a foundation for future processes for tritium separation.
272.
2023.05 구독 인증기관·개인회원 무료
The removal of aqueous pollutants, including dye molecules from wastewater remains one of the pressing problems in the world. Because of chemical stability and conjugated structure, dye molecules cannot be easy decomposed by heat with oxidizing reagents such as H2O2 and light. The most common representative of widespread organic pollutant is methylene blue (MB) with molecular formula C16H18ClN3S, which is important colorant and used in various chemical and biological production industries and causes serious environment problems. Porous materials, including MOFs (metal-organic frameworks) have been applied for efficient MB photocatalytic degradation. However, one of the main barriers to using most MOFs to break down aromatic organics is wide band gap energy, which means that the catalyst can exhibit high photocatalytic performance only under UVlight irradiation. Moreover, most MOFs usually show the poor water stability of frameworks, which tend to dissolve in water with total destruction. In this work we report about two new copper based MOFs with high photocatalytic properties for efficient MB degradation from wastewater under UV-light and natural sunlight. Time, required for 100% MB degradation, equals 7 minutes under UV (source 4 W 254 nm VL-4.LC UV-lamp) and 60 minutes under natural sunlight irradiation in the presence of H2O2. Crystal structure information is provided using single crystal X-ray diffraction data. The composition and comparative characteristics of MOFs are given using powder X-ray diffraction, UV–visible diffuse reflectance spectroscopy, UVvisible spectroscopy and Fourier-transform infrared spectroscopy.
273.
2023.05 구독 인증기관·개인회원 무료
Concrete decontamination tools capable of removing the nuclear contaminated surface are necessary to minimize the amount of concrete waste generated in the process of decontamination and dismantling of nuclear power plants. Laser scabbling is a decontamination technique that removes the contaminated surface layers concrete surface by inducing internal explosion. The application principle of laser scabbling technology uses the porous nature of concrete including moisture. When high thermal energy is applied to the concrete surface, an explosion at pores is induced along with an increase in water vapor pressure. High-powered laser beam can be an effective induction source of local explosive spalling on concrete surface. In this study, the scabbling test using a 5 kW highpowered fiber laser was conducted on the concrete blocks to establish the optimal conditions for surface decontamination. It was also measured the volume peeled off the concrete surface under the conditions of two different laser head speeds. Furthermore, we tested the removal efficiency of radioactive concrete particles generated during high-power fiber laser scabbling process. A 5 kW laser beam was applied to the concrete surface at two different laser head speeds - 120 mm/min and 600 mm/min. The laser beam repeatedly moved 200 mm horizontally and 40 mm vertically within the concrete block. The amount of surface concrete removed from concrete block was calculated from the measurement of the volume and mean depth using a 3D scanner device (laser-probed Global Advantage 9.12.8(HEXAGON)) for the two different the laser head speeds. By increasing the laser head speed, less explosive spalling occurred due to shorter contact time of the laser beam with the concrete. The laser head speed of 600 mm/min reduced about 89% of the waste generated by shallow depth of scabbling as compared to the waste generated at the laser head speed of 120 mm/min. The fiber laser scabbling system was developed for surface decontamination of radioactive concrete in nuclear power plants. Tests were performed to find the optimum parameters to reduce the generation of particulate waste from the contaminated concrete surface by controlling the laser head speeds. It was confirmed that the wastes from surface decontamination was reduced up to 89% by increasing laser head speed from 120 mm/min to 600 mm/min. It was also observed that the cylindrical tube effectively vacuumed the debris generated by the explosive spalling into the collector. Removal efficiencies of concrete particles were measured greater than 99.9% with ring blower power of 650 air watt of the filter system.
274.
2023.05 구독 인증기관·개인회원 무료
Heavy water (D2O) is a coolant as well as a moderator of pressurized heavy water reactors (PHWRs). During operation of PHWRs, deuterium (H-2, D) in heavy water is gradually converted to tritium (H-3, T), which is a radioactive nuclide with a half-life of 12.3 years, by capturing neutron. Various radioactive wastes contaminated by T are generated upon the PHWR operation. Owing to the similarity of D and T, they behave together a form of water (either liquid or vapor) in a normal circumstance. To handle D and T with the water form is quite difficult because it is not a solid and is highly mobile in nature. In this study, a mineralization technique to fix D and T in a solid form is suggested. It is considered that hydroxide minerals, which have low solubility in water, might tightly bind D and T in non-mobile, solid-state media. Feasibility of this strategy is studied by using a copper-based hydroxide mineral, atacamite. Atacamite is a natural mineral found in copper deposits with chemical formula of Cu2Cl(OH)3. Atacamite can be simply synthesized in laboratories by a precipitation method using copper chloride and calcium carbonate as precursors. Both chemicals were added into heavy water to obtain pale-green precipitates. Heavy water is the only source for D in this reaction and thus deuterated mineral is expected to be form. The obtained deuterated mineral, suspected to be Cu2Cl(OD)3, was then immersed in natural deionized water (extremely low D2O concentration) for several days to identify how fast D in Cu2Cl(OD)3 dissolves into water. In a preliminary Fourier transform infrared (FTIR) spectroscopy, absorption peaks related to HDO and D2O were not observed in the deionized water which is recovered after the immersion test, suggesting that D remained stable in the synthesized mineral. However, owing to low detection limit of FTIR, more precise analysis should be taken to clearly identify the stability of D of the deuterated atacamite. If deuterated hydroxide minerals are found to have sufficiently high D stability in natural water, they can be further treated with cement or other stabilization media to form a final wasteform for underground disposal.
275.
2023.05 구독 인증기관·개인회원 무료
Dry active waste (DAW) contains substantial amount of cellulose related materials. The DAW are usually classified as low and/or very low-level waste. In Korea, three types of disposal facilities have been considered: silo, engineering barrier, and land-fill. Currently, only the silo type disposal facility is in operation. Around 27 thousand drums were disposed in silo. Massive amount of cement concrete is used in construction of silo. The ground waste, which flow through the concrete structure, shows higher pH than as it is. It is generally known that the pH of silo is ~12.47 in Korea, when considering construction material, filling material, and property of ground water. It is expected that the cellulose in DAW will be partially transformed to isosaccharinic acid (ISA). It is generally accepted that the ISA plays a negative role in safety analysis of disposal facility by stimulation of specific nuclides. Various factors affect the degradation of cellulose containing radioactive waste, such as degree of polymerization, pH of disposal condition, interaction between concrete structure and ground water, etc. In this paper, the disposal safety analysis of cellulose containing radioactive, usually paper, cotton, wood, etc., are studied. The degradation of cellulose with respect to degree of polymerization, pH of neighboring water, filling material of silo, etc. are reviewed. Based on the review results, it is reasonable to conclude that the substantial amount of DAW could be disposed in silo.
276.
2023.05 구독 인증기관·개인회원 무료
The segmentation of activated components is considered as a one of the most important processes in decommissioning. The activated components, such as reactor vessel and reactor vessel internals, are exposed to neutron from the nuclear fuel and classified to intermediate, low, and very low-level wastes. As it is expected, the components, which are closed to nuclear fuel, exhibit higher degree of specific activity. After the materials were exposed to neutrons, their original elements transform to other nuclides. The primary nuclides in activated stainless steel are 55Fe, 63,59Ni, 60Co, 54Mn, etc. The previous study indicates that the specific activity of individual nuclide is strongly depends on the material compositions and impurities of the original materials. The 59Co is the one of the most important impurities in stainless steel and carbon steel. In this paper, the relationship between individual nuclides in activation analysis of activated components was studied. The systematic study on specific activity of primary nuclides will be discussed in this paper to understand the activation tendency of the components.
277.
2023.05 구독 인증기관·개인회원 무료
During the operation of the nuclear power plant, various radioactive waste are generated. The spent resin, boron concentrates, and DAW are classified as a generic radioactive waste. They are treated and stored at radioactive waste building. In the reactor vessel, different types of radioactive waste are generated. Since the materials used in reactor core region exposed to high concentration of neutrons, they exhibit higher level of surface dose rate and specific activity. And they are usually stored in spent fuel pool with spent fuel. Various non-fuel radioactive wastes are stored in spent fuel pool, which are skeleton, control rod assembly, burnable neutron absorber, neutron source, in core detector, etc. The skeleton is composed of stainless 304 and Inconel-718. There are two types of control rod assembly, that are WH type and OPR type. The WH type control rod is composed of Ag-In-Cd composites. The OPR type control rod is composed of B4C and Inconel-625. In this paper, the characteristics and storage status of the non-fuel radioactive waste will be reported. Also, the management strategy for the various non-fuel radioactive waste will be discussed.
278.
2023.05 구독 인증기관·개인회원 무료
The large rectangular and cylindrical concrete drums are stored in nuclear power plant (NPP) for a long time. At the early stage of NPP operation, the treatment technology of boron concentrates and spent resin was not well developed, when compared to current system. Since the waste acceptance criteria (WAC) of the disposal facility was not established, the boron concentrates and spent resins were packaged in 200 L drum. Some of the 200 L drums, which contain relatively high dose rate radioactive waste, were stored in large concrete drum. The concrete drum offers superior shielding effect and allows reduction of radiation exposure to workers. The WAC requires various characteristics: radiological characteristics, physical characteristics, chemical characteristics, etc. The non-destructive method allows the rapid evaluation and estimation of the concrete structure. Also, it is expected that the large concrete exhibits integrity after the measurements. In this paper, the non-destructive method to understand the large rectangular and cylindrical drum is systematically studied. The advantage and disadvantage of the non-destructive methods were compared in this paper. In addition, the optimized methodology to characterize the radioactive waste containing large rectangular and cylindrical drum will be discussed in this paper.
279.
2023.05 구독 인증기관·개인회원 무료
On March 11 2011, Fukushima Daiichi nuclear power plant site was attacked by a huge tsunami caused by Tohoku Pacific Ocean earthquake. Nuclear fuels of unit 1, 2, and 3 of Fukushima Daiichi nuclear power plant was melted down by the disaster. After the accident, Japan’s government has announced “Mid-and-Long-Term Roadmap towards the decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station Units 1-4”. The topics of roadmap is made of measures to deal with contaminated water, removal of fuel rod assemblies from spent fuel pools, retrieval of fuel debris, measures to deal with waste materials, and other operations. To support the activity of the roadmap, various facilities about decommissioning have been established and operated on inside or outside of Fukushima Daiichi nuclear power plant site. Representatively, Collaborative Laboratories for Advanced Decommissioning Science which conducts R&D decommissioning, Naraha Remote Technology Development Center which develops remotes robots and VR (Virtual reality), Okuma Analysis and Research Center which performs radiochemical analyses for radioactive waste, and Fukushima Environmental Safety Center which conducts environmental dynamics and radiation monitoring.
280.
2023.05 구독 인증기관·개인회원 무료
The intermediate level spent resins waste generated from water purification for the the moderator and primary heat transport system during operaioin of heavy water reactor (HWR). Especially, moderator resins contain high level activity largely because of their C-14 content. So spent resins are considered as a problematirc solid waste and require special treatment to meet the waste acceptance criteria for a disposal site. Various methods have been studied for the treatment of spent resins which include thermal, destructive, and stripping methods. In the case of solidification methods, cement, bitument or organic polymers were suggested. In the 1990s, acid stripping using nitric acid and thermal treatment methods were actively investigated in Canada to remove C-14 nuclide from waste resin. In Japan, thermal distructive method was studied in the 1990s. Since 2005, KAERI developed acid stripping method using phosphate salt. However, acid stripping method are not suitable due to large amounts of 2nd waste containing acid solution with various nuclides. To solve this probelm, KAERI has been suggested the microwave treatment method for C-14 selective removal from waste resin in the 2010s. Pilot scale demonstration tests using radioactive waste resin generated from Wolsung unit 1 and unit 2 were successfully conducted and 95% of C-14 was selectively removed from the radioactive waste resin. In recent years, price of C-14 source is dramatically increased due to market growth of C-14 utilization and exclusive supply chain depending on China and Russia. High purity of C-14 were captured in HWR waste resin. Interest of C-14 recovery research from HWR waste resin is currently increased in Canada. In this study, microwave method is suggested to treat HWR waste resin with C-14 recovery process. Additionally, status of waste resin management and research trends of HWR waste resin treatment are introduced.