The widespread and extensive use of glyphosate in agriculture has raised concerns about its potential impact on the quality and safety of agricultural products. Conventional detection methods require long analysis times, making them impractical for the rapid detection of large quantities of samples. Therefore, developing a fast and simple detection system for glyphosate pesticide residues is urgent. In this study, the development of a facile fluorescence probe synthesized using a simple one-pot hydrothermal method for the determination of glyphosate is an important step toward addressing the need for a fast and simple detection system. The present sensor was created using bovine serum albumin (BSA) as a precursor, and the sensor operates by producing an “off–on” fluorescent signal. The bovine albumin-derived BSA-CDs emitted light yellow fluorescence, but this fluorescence was quenched (or suppressed) by the presence of Cu2+ ions. However, the fluorescence can be restored by the presence of glyphosate, which interacts with the Cu2+ ions to form a complex and release the BSACDs from suppression. The functional groups in glyphosate can capture Cu2+ and break the BSA-CDs/Cu2+ combinatorial system. The BSA-CDs/Cu2+ fluorescence quenching system had good selectivity for glyphosate. The detection limit of the BSA-CD/Cu2+ fluorescence sensor was 0.05 μg/mL. This developed method was utilized to successfully detect glyphosate in Chinese wheat. The average recoveries ranged from 98.9 to 100.7%, with a relative standard deviation < 3.0%, showing good prospects for practical applicability.
본 연구에서는 쑥에서 서식하는 Pleotrichophorus pseudoglandulosus (Palmer, 1952) 를 처음으로 보고한다. 무시성충에 대한 형태학적 정보, 기주식물, 분포지역, 한국에 분포하는 Pleotrichophorus 속 종들에 대한 분류키를 제공한다.
This study was conducted to determine the acceptability of locally accepted japonica rice varieties among 53 farmers in Bohol and 38 farmers in Nueva Ecija, who were further classified into adopters and non-adopters of the GUVA japonica rice variety. Snowball sampling was made on farmer adopters/cooperators of a high-quality seed multiplication and dissemination project in the said provinces. The farmer respondents were mostly male whose ages ranged from 30 to 80 years and with farm sizes from 0.5 to 16 hectares. The farmers’ rice variety and usage were assessed by comparing the GUVA japonica rice variety with their commonly planted indica rice variety based on its agronomic characteristics, yield and income potential, and seed purity concerns. The barriers/hesitations to adoption of the GUVA japonica rice variety, namely seed availability, varietal information, and market potential, must be complemented with the suggested improvements on the variety together with factors that convince the farmers for committed use of this variety. Researchers together with partner agencies must put a lot of thought on how to integrate and synchronize these concerns so that the farmers can adopt GUVA japonica rice. Interest check on the usage of GUVA japonica rice variety in rice production as well as suggested improvements were solicited as the basis for continuous R&D pursuits that would eventually promote and adopt the GUVA japonica rice variety from these provinces.
Background: Reproductive management practices play crucial roles to maximize the reproductive performance of cows, and thus contribute to farm profitability. We aimed to assess the reproductive management of cows currently practiced in the dairy farms in an urban farming system. Methods: A total of 62 dairy farms were randomly selected considering all size of farms such as small (1-5 cattle), medium (6-20 cattle) and large farms (> 20 cattle) from selected areas of Dhaka city in Bangladesh. The reproductive managementrelated parameters viz. estrus detection, breeding method, pregnancy diagnosis, dry cow and parturition management, vaccination and treatment of reproductive problems etc. were obtained in a pre-defined questionnaire during the farm visit. Results: The visual observation method was only used (100.0%; 62/62) for estrus detection irrespective of size of the farms; while farmers observed cows for estrus 4-5 times a day, but only for 20-60 seconds each time. Regardless of farm size, 89.0% (55/62) farms used artificial insemination (AI) for breeding the cows. Intriguingly, all farms (100.0%) routinely checked the cows for pregnancy at 35-40 days post-breeding using rectal palpation technique by registered veterinarian. However, only 6.5% (4/62) farms practiced dry cow management. Notably, all farms (100.0%) provided nutritional supplements (Vit D, Ca and P) during late gestation. However, proper hygiene and cleanliness during parturition was not practiced in 77.4% (48/62) farms; even though 96.7% (60/62) farms treated cows by registered veterinarian for parturition-related problems. Conclusions: While farmers used AI service for breeding and timely check their cows for pregnancy; however, they need to increase observation time (30 minutes/ observation, twice in a day: early morning and early night) for estrus detection, consider dry cow management and ensure hygienic parturition for maximizing production.
The legal status of Biodiversity Beyond National Jurisdiction (BBNJ) has been regulated through the High Seas Treaty as a common heritage of humankind. However, there still exist problems related to overlapping areas above the Extended Continental Shelf (ECS). In such areas, a significant continental shelf would fall within national jurisdiction, whereas the water column would be under the regime of the high seas, and BBNJ would be the common heritage of humankind. We argue that, in order to address the overlapping of areas within the superjacent waters in the ECS, a given sui generis status is required, so that the coastal state has a sovereign right to conserve the BBNJ in these areas. This study concludes that the sui generis arrangement should be implemented in the context of an overlapping ECS and its water column. The efforts of the Indonesian government to extend the continental shelf beyond 200 nautical miles constitute an important step in preserving natural resources for future generations.
An eco-friendly material was synthesized through interfacial polymerization of aniline on particles of g-C3N4 with arginine, resulting in Arg-PANI@g-C3N4 composite. The as-synthesized composite was characterized by the Brunauer, Emmett, and Teller (BET) surface area, X-ray energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The adsorption capability of as-synthesized composite towards Orange G (OG) dye has been evaluated under several experimental conditions, such as the adsorbent dosage, initial dye concentration, contact time under agitation, pH of dye solution and temperature. Thermodynamics parameters such as free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) were also calculated and suggested that the adsorption process is spontaneous and endothermic in nature. The kinetics data revealed that the adsorption of OG dye onto Arg-PANI@g-C3N4 follows the pseudo-second order kinetics model. The maximum adsorption capacity was found to be 80.54 mg·g−1. Furthermore, the Arg-PANI@g-C3N4 surface exhibited a Langmuir-like adsorption isotherm in contrast to a Freundlich isotherm due to homogeneous active site distribution. Regeneration investigation showed the excellent reusability of Arg-PANI@g-C3N4 composite during the cleaning up of solution containing OG dye molecules.
In this work, norepinephrine (NE) was determined by an electrochemical sensor represented by a carbon paste electrode boosted using nitrogen-doped porous carbon (NDPC) derived from Spirulina Platensis microalga anchored CoFe2O4@ NiO and 1-Ethyl-3-methylimidazolium acetate (EMIM Ac) ionic liquid. The morphological characteristics of the catalyst were recorded by field emission scanning electron microscope (FE-SEM) images. Moreover, the electrochemical behavior of norepinephrine on the fabricated electrode was checked using various voltammetric methods. All tests were done at pH 7.0 as the optimized condition in phosphate buffer solution. The results from linear sweep voltammetry revealed that the electro-oxidation of norepinephrine was diffusion, and the diffusion coefficient value was obtained by chronoamperometry (D⁓6.195 × 10– 4). The linear concentration of the modified electrode was obtained from 10 to 500 μM with a limit of detection of 2.26 μM using the square wave voltammetry (SWV) method. The sensor selectivity was investigated using various species, and the results from stability and reproducibility tests showed acceptable values. The sensor's efficiency was tested in urine and pharmaceutical as real samples with recovery percentages between 97.1% and 102.82%.
Graphene is a suitable transducer for wearable sensors because of its high conductivity, large specific surface area, flexibility, and other unique considerable features. Using a simple, fast galvanic pulse electrodeposition approach, a unique nonenzymatic glucose amperometric electrode was successfully developed based on well-distributed fine Cu nanoparticles anchored on the surface of 3D structure laser-induced graphene. The fabricated electrode allows glucose detection with a sensitivity of 2665 μA/mM/cm2, a response time of less than 5 s, a linear range of 0.03–4.5 mM, and a LOD of 0.023 μM. It also detects glucose selectively in the presence of interfering species such as ascorbic acid and urea. These provide the designed electrode the advantages for glucose sensing in saliva with 97% accuracy and present it among the best saliva-range non-enzymatic glucose sensors reported to date for real-life diagnostic applications.
Graphene oxide (GO) and ultrafine slag (UFS) have been applied to reinforce cement mortar cubes (CMC) in this research. The consequences of GO and UFS on the mechanical attributes of the CMC were explored through experimental investigations. Established on the results, at the 28 days of hydration, the CMC compressive and flexural strength with 0.03% of GO and 10% UFS were 89.8 N/mm2 and 9.1 N/mm2, respectively. Furthermore, the structural changes of CMC with GO and UFS were qualitatively analysed with instrumental techniques such as scanning electron microscope (SEM), X-ray fluorescence (XRF), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), FT Raman spectroscopy, atomic force microscopy (AFM), and 27Al, 29Si-Nuclear magnetic resonance spectroscopy (NMR). SEM results reported that GO and UFS formed an aggregated nanostructure that improved the microstructural properties of the CMC. TGA analysis revealed the quantum of calcium hydrate and bound water accomplished by supplementing GO bound to the UFS aggregates. FT-IR analysis of the CMC samples confirmed the ‘O-’comprising functional groups of GO which expedited the formation of complexes between calcium carbonate ( CaCO3) and UFS. 0.03% GO was the optimum dosage that enhanced the compressive and flexural attributes when combined with 10% UFS in CMC.
Flexible supercapacitors (FS) are ideal as power backups for upcoming stretchable electronics due to their high power density and good mechanical compliance. However, lacking technology for FS mass manufacturing is still a significant obstacle. The present study describes a novel method for preparing FS based on reduced graphene oxide (RGO) using the N+ plasma technique, in which N+ reduces graphene oxide on the surface of a cotton/polyester substrate. The effect of aloe vera (AV) as a natural reducing & capping agent and carbon nanotubes (CNT) as nanoconductors on the electrochemical performance of the electrodes is studied. FESEM and XPS were employed to investigate the electrodes' structural and chemical composition of electrodes. The galvanostatic charge–discharge curves of electrodes revealed the enhancement of the electrochemical activity of the as-prepared electrode upon additions of AV and CNT. The areal capacitance of the RGO, RGO/AV, and RGO/ AV/CNT supercapacitors at 5 mV/s was 511, 1244.5, and 1879 mF/cm2, respectively. The RGO electrode showed capacitive retention of 80.9% after 2000 cycles enhanced to 89.7% and 92% for RGO/AV and RGO/AV/CNT electrodes, respectively. The equivalent series resistance of the RGO electrode was 126.28 Ω, decreased to 56.62 and 40.06 Ω for RGO/AV and RGO/ AV/CNT electrodes, respectively.
Nitrogen and phosphorous dual-doped carbon nanotubes (N,P/CNT) have been grown in a single-step direct synthesis process by CVD method using iron-loaded mesoporous SBA-15 support, as an electrode material for the energy storage device. For comparison, pristine nanotubes, nitrogen and phosphorous individually doped nanotubes were also prepared. The basic characterization studies clarify the formation of nanotubes and the elemental mapping tells about the presence of the dopant. Under three-electrode investigations, N,P/CNT produced a maximum specific capacitance of about 358.2 F/g at 0.5 A/g current density. The electrochemical performance of N,P/CNT was further extended by fabricating as a symmetric supercapacitor device, which delivers 108.6 F/g of specific capacitance for 0.5 A/g with 15 Wh/kg energy density and 250 W/kg power density. The observed energy efficiency of the device was 92.3%. The capacitance retention and coulombic efficiency were 96.2% and 90.6%, respectively, calculated over 5000 charge–discharge cycles.
The need for high-performance environmental remediation has increased due to the environment’s ongoing degradation in the form of significant growth in industrialization and urbanization. Therefore, the toxic heavy metals can easily enter into environmental as well as foods and thus the search of clean water for drinking, household and irrigation purposes is of crucial importance. To meet this challenge, microelectrodes are flexible, low-cost and easier for fabrication has become the strong role in the detection of heavy metals with high sensitivity towards higher adsorption of heavy metals from contaminated water. To improve the sensitivity of the microelectrodes, carbon-based microelectrodes decorated with nanomaterials have been explored for the detection of metal ions thereby their presence in trace levels can be estimated. The aim of the present review is to summarize the recent developments in carbon-based microelectrodes for the electrochemical determination of heavy metals. It is followed by the various nanomaterials decorated on the carbon microelectrodes for detection of heavy metals was systematically discussed. Finally, the application and the future perspectives in the development of smart electrochemical sensing is provided. This short review will provide the useful information for the recent development in microelectrodes and also guide the pathway for the detection of heavy metals.
증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하 고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산 량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀 (MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구 축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min- 1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU 는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능 을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.