검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,527

        215.
        2023.11 구독 인증기관·개인회원 무료
        This study presents a rapid and sequential radiochemical separation method for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO3, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO3 medium with anion exchange resin. For leaching solution passed through anion exchange column, the Am isotopes were separated with TRU resin. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after micro-precipitation of neodymium. The sequential radiochemical separation of Pu and Am isotopes in radioactive waste samples using anion exchange resin and TRU resin was validated with ICP-MS system.
        216.
        2023.11 구독 인증기관·개인회원 무료
        Heavy water (deuterium oxide, D2O) is water in which hydrogen atoms (1H, H), one of the constituent elements of water molecules, have been replaced with deuterium (2H, D), a heavier isotope. Heavy water is used in a variety of industries, including semiconductors, nuclear magnetic resonance, infrared spectroscopy, neutron deceleration, neutrino detection, metabolic rate studies, neutron capture therapy, and the production of radioactive materials such as plutonium and tritium. In particular, heavy water is used as a neutron moderator or coolant in nuclear reactors and as a fuel for nuclear fusion energy, methods for measuring heavy water are becoming increasingly important. There are methods with density, mass spectrometry, and infrared (IR) spectroscopy. In this study, Fourier transform infrared spectroscopy (FT-IR) was used, which is commonly used in IR spectroscopy because of its relatively high analytical sensitivity, low operating costs, and easy online analysis. Heavy water was identified in the range of 2,300-2,600 cm-1 wavenumber (O-D) and the range of 1,200-1,300 cm-1 wavenumber (D-O-D), which are known to be the range with strong infrared absorption. As a result, the linearity of infrared absorbance for each heavy water concentration was confirmed within the relative expansion uncertainty (k=2).
        217.
        2023.11 구독 인증기관·개인회원 무료
        In this study, we introduce the validation of the analysis guidelines through preliminary experiments of the draft analysis guidelines before analyzing waste materials (non-combustible). This validation data was applied the accuracy and efficiency of the separation and analysis for the waste such as steel generated from NPP. Steel (non-flammable) was leached the mixed acid and the leaching solution was separated by using the separation guidelines. Steel was corroded with radioactive RM (Co-60, Cs-137) and mixed acid. After drying, the corroded steel was measured the initial radioactivity by a HPGe detector (10,000 seconds). The sample was inserted in a beaker and leached with mixed acid (10 M HNO3 + 4 M HCl) for 2 hours. In this solution, it added 2 ml of H2O2 to increase the leaching effect. The ultrasonic device was adjusted so that the temperature does not exceed 60°C. After elution, the surface of the sample was washed with pure water. The weight of the sample was measured accurately, and recorded the weight loss rate after infiltration. The leaching sample was measured radioactivity by a HPGe detector (10,000 seconds). It was calculated the recovery rate based on the difference in total radioactivity before and after leaching. Before the test, radioactive RM (Co-60, Cs-137) was radioactive deposited by corrosion, but Cs- 137 was not detected in the initial gamma measurement and only Co-60 nuclides were deposited. The recovery rate test results were confirmed to be about 100%.
        218.
        2023.11 구독 인증기관·개인회원 무료
        Currently, non-volatile nuclides such as 94Nb, 99Tc, 90Sr, 55Fe, and 59/63Ni are used a sequential separation. In this study, we developed a separation for 99Tc and 90Sr by a carbonate precipitation. Sodium Carbonate (Na2CO3) was inserted in the aqueous sample from a Dry Active Waste (DAW) and a carbonate precipitation was produced. The precipitate is composed of di- or tri-valent element such as Co, Sr, Fe, Ni and the supernatant is composed of mono-valent element (Cs) and anion materials (ReO4 -, TcO4 -). In DAW, it was confirmed that the recovery of 90Sr (precipitate) and 99Tc (supernatant) were > 90%, respectively. The precipitate and supernatant separated by using a Sr-resin and an anion-exchange resin, respectively. The separated samples were measured by a Liquide Scintillation Counter (LSC, 90Sr) and Induced-Coupled Plasma-Mass Spectroscopy (ICPMS, 99Tc).
        219.
        2023.11 구독 인증기관·개인회원 무료
        I-129 is one of the imporant nuclides that must be determined in the disposal process of radioactive waste in many countries. This radionuclide emits gamma-ray and x-ray photons within the energy range of 29 to 39 keV, consequently, an x-ray detector with high resolution performance is required for the analysis of I-129 activity. An n-type coaxial HPGe detector exhibits higher efficiency characteristics compared to a planar-type HPGe detector, however, its resolution is lower than a planar type. So it is difficult to completely deconvolute and fit the gamma-ray and xray peaks in the spectrum using a general gamma-ray spectrum analysis program such as GammaVision. To address this problem, in a previous study introduced the developed algorithm for the fitting and analysis of I-129 gamma-ray and x-ray spectum by fixing their emission ratios. In this study, we improved the algorithm by considering the variation of the efficiency in the HPGe spectrum, which reflects the actual HPGe crystal condition. And algorithm tests were performed using measured I-129 sample spectra with interfering nuclides acting as background curve are introduced.
        220.
        2023.11 구독 인증기관·개인회원 무료
        Bis (2-ethylhexyl)phosphoric acid (HDEHP) is a renowned extractant, favored for its affinity to selectively remove uranium via its P=O groups. We previously synthesized HDEHP-functionalized mesoporous silica microspheres for solid-phase uranium adsorption. Herein, we investigated the kinetic and isothermal behavior of uranyl ion adsorption in mesoporous silica microspheres functionalized with phosphate groups. Adsorption experiments were conducted by equilibrating 20 mg of silica samples with 50 mL of uranium solutions, with concentrations ranging from 10 to 100 mgU L−1 for isotherms and 100 mgU L−1 for kinetics. Three distinct samples were prepared with varying HDEHP to TEOS molar ratios (x = 0.16 and 0.24) and underwent hydrothermal treatment at different temperatures, resulting in distinct textural properties. Contact times spanned from 1 to 120 hours. For x = 0.16 samples, it took around 50 and 11 hours to reach equilibrium for the hydrothermally treated samples at 343 K and 373 K, respectively. Adsorbed quantities were similar (99 and 101 mg g-1, respectively), indicating consistent functional group content. This suggests that the key factor influencing uranium adsorption kinetics is pore size of the silica. The sample treated at 373 K, with a larger pore size (22.7 nm) compared to 343 K (11.5 nm), experienced less steric hindrance, allowing uranium species to diffuse more easily through the mesopores. The data confirmed the excellent fit of pseudo-second-order kinetic model (R2 > 0.999) and closely matched the experimental value, suggesting that chemisorption governs the rate-controlling step. To gain further insights into uranium adsorption behavior, we conducted an adsorption isotherm analysis at various initial concentrations under a constant pH of 4. Both the Langmuir and Freundlich isotherm models were applied, with the Langmuir model providing a superior fit. The relatively high R2 value indicated its effectiveness in describing the adsorption process, suggesting homogenous sorbate adsorption on an energetically uniform adsorbent surface via a monolayer adsorption and constant adsorption site density, without any interaction between adsorbates on adjacent sites. Remarkably, differences in surface area did not significantly impact uranium removal efficiency. This observation strongly suggests that the adsorption capacity is primarily governed by the loading amount of HDEHP and the inner-sphere complexation with the phosphoryl group (O=P). Our silica composite exhibited an impressive adsorption capacity of 133 mg g-1, surpassing the results reported in the majority of other silica literature.