검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,512

        332.
        2023.11 구독 인증기관·개인회원 무료
        Within the air purification system of a nuclear power plant, specific radioactive isotopes are extracted from gases through adsorption onto activated carbon. To properly dispose of used activated carbon, it is essential to determine the concentration of radioactive nuclides within it. This study discusses the application of the pyrolysis method for analyzing the concentrations of 3H and 14C in spent activated carbon. The pyrolysis was conducted using Raddec’s Pyrolyser, with adjustments made to parameters such as temperature profiles, airflow rates, sample quantities, and trapping solution volumes. The evaluation method for the pyrolysis of activated carbon to analyze 3H and 14C involved adding 3H and 14C sources to the activated carbon before use and subsequently assessing the recovery rates of the added sources in comparison to the analysis results.
        333.
        2023.11 구독 인증기관·개인회원 무료
        Currently, non-volatile nuclides such as 94Nb, 99Tc, 90Sr, 55Fe, and 59/63Ni are used a sequential separation. In this study, we developed a separation for 99Tc and 90Sr by a carbonate precipitation. Sodium Carbonate (Na2CO3) was inserted in the aqueous sample from a Dry Active Waste (DAW) and a carbonate precipitation was produced. The precipitate is composed of di- or tri-valent element such as Co, Sr, Fe, Ni and the supernatant is composed of mono-valent element (Cs) and anion materials (ReO4 -, TcO4 -). In DAW, it was confirmed that the recovery of 90Sr (precipitate) and 99Tc (supernatant) were > 90%, respectively. The precipitate and supernatant separated by using a Sr-resin and an anion-exchange resin, respectively. The separated samples were measured by a Liquide Scintillation Counter (LSC, 90Sr) and Induced-Coupled Plasma-Mass Spectroscopy (ICPMS, 99Tc).
        334.
        2023.11 구독 인증기관·개인회원 무료
        Bis (2-ethylhexyl)phosphoric acid (HDEHP) is a renowned extractant, favored for its affinity to selectively remove uranium via its P=O groups. We previously synthesized HDEHP-functionalized mesoporous silica microspheres for solid-phase uranium adsorption. Herein, we investigated the kinetic and isothermal behavior of uranyl ion adsorption in mesoporous silica microspheres functionalized with phosphate groups. Adsorption experiments were conducted by equilibrating 20 mg of silica samples with 50 mL of uranium solutions, with concentrations ranging from 10 to 100 mgU L−1 for isotherms and 100 mgU L−1 for kinetics. Three distinct samples were prepared with varying HDEHP to TEOS molar ratios (x = 0.16 and 0.24) and underwent hydrothermal treatment at different temperatures, resulting in distinct textural properties. Contact times spanned from 1 to 120 hours. For x = 0.16 samples, it took around 50 and 11 hours to reach equilibrium for the hydrothermally treated samples at 343 K and 373 K, respectively. Adsorbed quantities were similar (99 and 101 mg g-1, respectively), indicating consistent functional group content. This suggests that the key factor influencing uranium adsorption kinetics is pore size of the silica. The sample treated at 373 K, with a larger pore size (22.7 nm) compared to 343 K (11.5 nm), experienced less steric hindrance, allowing uranium species to diffuse more easily through the mesopores. The data confirmed the excellent fit of pseudo-second-order kinetic model (R2 > 0.999) and closely matched the experimental value, suggesting that chemisorption governs the rate-controlling step. To gain further insights into uranium adsorption behavior, we conducted an adsorption isotherm analysis at various initial concentrations under a constant pH of 4. Both the Langmuir and Freundlich isotherm models were applied, with the Langmuir model providing a superior fit. The relatively high R2 value indicated its effectiveness in describing the adsorption process, suggesting homogenous sorbate adsorption on an energetically uniform adsorbent surface via a monolayer adsorption and constant adsorption site density, without any interaction between adsorbates on adjacent sites. Remarkably, differences in surface area did not significantly impact uranium removal efficiency. This observation strongly suggests that the adsorption capacity is primarily governed by the loading amount of HDEHP and the inner-sphere complexation with the phosphoryl group (O=P). Our silica composite exhibited an impressive adsorption capacity of 133 mg g-1, surpassing the results reported in the majority of other silica literature.
        335.
        2023.11 구독 인증기관·개인회원 무료
        The ultimate objective of deep geological repositories is to achieve complete segregation of hazardous radioactive waste from the biosphere. Thus, given the possibility of leaks in the distant future, it is crucial to evaluate the capability of clay minerals to fulfill their promising role as both engineered and natural barriers. Selenium-79, a long-lived fission product originating from uranium- 235, holds significant importance due to its high mobility resulting from the predominant anionic form of selenium. To investigate the retardation behaviors of Se(IV) in clay media by sorption, a series of batch sorption experiments were conducted. The batch samples consisted of Se(IV) ions dissolved in 0.1 M NaCl solutions, along with clay minerals including kaolinite, montmorillonite, and illite-smectite mixed layers. The pH of the samples was also varied, reflecting the shift in the predominant selenium species from selenious acid to selenite ion as the environment can shift from slightly acidic to alkaline conditions. This alteration in pH concurrently promotes the competition of hydroxide ions for Se(IV) sorption on the mineral surface as the pH increases and impedes the selective attachment of selenium. The acquired experimental data were fitted through Langmuir and Freundlich sorption isotherms. From the Freundlich fit data, the distribution coefficient values of Se(IV) for kaolinite, montmorillonite, and illite-smectite mixed layer were derived, which exhibited a clear decrease from 91, 110, 62 L/kg at a pH of 3.2 to 16, 6.3, 12 L/kg at a pH of 7.5, respectively. These values derived over the pH range provide quantitative guidance essential for the safety assessment of clay mineral barriers, contributing to a more informed site selection process for deep geological repositories.
        336.
        2023.11 구독 인증기관·개인회원 무료
        In order to establish disposal plans for sludge, which is one of the untreated waste materials from domestic nuclear power plants, it is necessary to determine the radioactivity concentration of radioactive isotopes. In this study, we aim to evaluate the gross alpha radioactivity of sludge containing radioactive contaminants after pre-treatment, in order to assess the level of sludge waste and obtain analytical data for discussing disposal methods. Samples of sludge generated from nuclear power plants were pre-treated, solutionized, and prepared as analysis samples for evaluating the gross alpha radioactivity.
        337.
        2023.11 구독 인증기관·개인회원 무료
        Typically, the bottom of the effluent treatment facility at a nuclear power plant contains sediment, which is low-contamination waste consisting of sludge, gravel, sand, and other materials from which radioactive contaminants have been removed. Among these sediments, sludge is an irregular solid form consisting of small particles that are coagulated together, with radioactive isotopes containing cobalt attached. Currently, there is a record of disposing of dry active waste from domestic nuclear power plants, and efforts are underway to gather basic data for the disposal of untreated waste such as sludge, spent filter, and spent resin. In particular, the classification and disposal methods of waste will be determined based on the radioactivity concentration. Therefore, plans are being made to determine the radioactivity concentration of radioactive isotopes and establish disposal plans for sludge samples. In this study, pre-treatment and solutionization were carried out for the analysis of radioactive isotopes in sludge sampels from nuclear power plants. The deviation of the gamma radioisotope analysis results was derived to obtain an optimal sample quantity that represents the sludge.
        338.
        2023.11 구독 인증기관·개인회원 무료
        For the disposition of radioactive wastes generated from nuclear power plant, radioisotope inventory must be analyzed to determine an activity concentration of radionuclides. Radionuclides in low- and intermediate-low-level of radioactive wastes, however, can be easily classified to easyto- measure (ETM) and difficult-to-measure (DTM) nuclides. ETM nuclides are gamma emitting nuclides that is relatively easy to measure because they do not need to be destroyed for the preprocessing. On the other hands, DTM nuclides are alpha and beta emitting nuclides that need to be destroyed for the preprocessing and also need chemical separation. Currently, measurement methods for DTM nuclides are developed and in this paper measurement methods of Fe-55, Ni-59, Ni-63, Sr-90 and Tc-99 will be introduced.
        339.
        2023.11 구독 인증기관·개인회원 무료
        Alpha activities can be used for categorization, transportation, and disposal of radioactive waste generated from the operation of nuclear facilities including nuclear power plants. In order to transport and dispose of such low- and intermediate-level radioactive waste (LILW) to the Wolsong LILW Disposal Center (WLDC) at Gyeongju, the gross alpha concentration of an individual drum should be determined according to the acceptance criteria. In addition, when the gross alpha concentration exceeds 10 Bq/g, the inventory of the comprising alpha emitters in the waste is to be identified. Gross alpha measurements using a proportional counter are usually straightforward, inexpensive, and high-throughput, so they are broadly used to assay the total alpha activity for environmental, health physics, and emergency-response assessments. However, several factors are thoughtfully considered to obtain a reliable approximate for the entire alpha emitters in a sample, which include the alpha particle energy of a particular radionuclide, the radionuclide that is used as a calibration standard, the uniformity of film in a planchet, time between sample collection and sample preparation, and time between sample preparation and counting. Korea Atomic Energy Research Institute (KAERI) have evaluated the inventory of radionuclides in low-level radioactive waste drums to send every year hundreds of them to the WLDC. In this presentation, we revisit the gross alpha measurement results of the drums transported to WLDC in the past few years and compare them with the concentrations of alpha emitters measured from alpha spectrometry and gamma spectrometry. This study offers an insight into the gross alpha measurement for radioactive waste regarding calibration source, self-absorption effect, composition of alpha emitters, etc.
        340.
        2023.11 구독 인증기관·개인회원 무료
        To achieve permanent disposal of radioactive waste drums, the radionuclides analysis process is essential. A variety of waste types are generated through the operation of nuclear facilities, with dry active waste (DAW) being the most abundant. To perform radionuclides analysis, sample pretreatment technology is required to transform solid samples into solutions. In this study, we developed a dry ashing-microwave digestion method and secured the reliability of the analysis results through a validity evaluation. Additionally, we conducted a comparative analysis of the radioactivity of 94Nb nuclides with and without the chemical separation process, which reduced the minimum detectable activity (MDA) level by more than 65-fold for a certain sample.