홍경천의 천연 보존료로서의 이용성을 검토하기 위하여 각종 용매로 홍경천 추출물을 제조하고 극성에 따라 순차 분획, silica-gel chromatography, thin-layer chromatography, high performance liquid chromatography의 분리과정을 거쳐 순수 분리된 각 물질을 GC/MS(EI) spectrum, H-NMR, C-NMR spectrum, 을 이용하여 항균물질을 동정하여 다음과 같은 결과를
Plasma-photocatalytic oxidation process was applied in the decomposition of Triethylamine(TEA) and Methyl ethyl ketone(MEK). Plasma reactor was made entirely of pyrex glass and consists of 24 ㎜ inner diameter, 1,800 ㎜ length and discharge electrode of 0.4 ㎜ stainless steel. And initial concentrations of TEA and MEK for plasma-photocatalytic oxidation are 100 ppm. Odor gas samples were taken by gas-tight syringe from a glass sampling bulb which was located at reactor inlet and outlet, and TEA and MEK were determined by GC-FID.
For plasma process, the decomposition efficiency of TEA and MEK were evaluated by varying different flowrates and decomposition efficiency of TEA and MEK increased considerably with decreasing treatment flowrates.
For photocatalytic oxidation process, also the decomposition efficiency of TEA and MEK increased considerably with decreasing treatment flowrates. The decomposition efficiency of MEK was 57.8%, 34.2%, 18.8% respectively and the decomposition efficiency of TEA was reached all 100%. This result is higher than that of plasma process only.
From this study, the results indicate that plasma-photocatalytic oxidation process is ideal for treatment of TEA and MEK.