검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 423

        9.
        2024.04 구독 인증기관·개인회원 무료
        Vespa mandarinia (Vespidae: Hymenoptera) is one of the two largest true hornets known to science. The species is a noted predator of social Hymenoptera and a significant pest of managed honey bees in its native range, but is also known to feed on a wide variety of other species when available. Most of the prey records for V. mandarinia are derived from visual observations in Japan, with sparse observations from other parts of its native range. A population of V. mandarinia was detected in North America in 2019 and five nests were removed between 2019 and 2021. We extracted DNA from larval meconia from four nests collected in Washington State, USA, and amplified the CO1 region to determine the potential prey base. We compared these with sequences generated from three nests in the Republic of Korea, and with prey pellets collected from foraging hornets at several locations in Korea. Results indicate that the prey base was much wider in the ROK than the USA, although social Hymenoptera were the most abundant and common prey items in both regions. Prey range seems to be bound by an intersection of organism size and local biodiversity, with little evidence to suggest that the latter is a limiting factor in colony success.
        10.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This work focuses on the fabrication of excellent magnetic structures for trapping breast cancer cells. Micromagnetic structures were patterned for trapping cancer cells by depositing 30 nm of permalloy on a silicon substrate. These structures were designed and fabricated using two fabrication techniques: electron beam lithography and laser direct writing. Two types of magnetic structures, rectangular wire and zig-zagged wire, were created on a silicon substrate. The length of each rectangular wire and each straight line of zig-zagged wire was 150 μm with a range of widths from 1 to 15 μm for rectangular and 1, 5, 10 and 15 μm for zigzag, respectively. The magnetic structures showed good responses to the applied magnetic field despite adding layers of silicon nitride and polyethylene glycol. The results showed that Si + Si3N4 + PEG exhibited the best adhesion of cells to the surface, followed by Si + Py + Si3N4 + PEG. concentration of 5-6 with permalloy indicates that this layer affected silicon nitride in the presence of Polyethylene glycolPEG.
        4,000원
        11.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The biological information of fish, which include reproduction, is the prerequisite and the basis for the assessment of fisheries. Methods: The aim of this work was to know the reproductive biology with the first sexual maturity (TL50) and the spawning period for 58 mainly fish species in the waters around La Réunion Island (Western Indian Ocean). Twenty families belonging to the Actinopterygii were represented (acanthuridae, berycidae, bramidae, carangidae, cirrhitidae, gempylidae, holocentridae, kyphosidae, labridae, lethrinidae, lutjanidae, malacanthidae, monacanthidae, mullidae, polymixiidae, pomacentridae, scaridae, scorpaenidae, serranidae, sparidae; 56 species; n = 9,751) and two families belonging to the Elasmobranchii (squalidae, centrophoridae; 2 species; n = 781) were sampled. Between 2014 and 2022, 10,532 individuals were sampled covering the maximum months number to follow the reproduction periods of these species. Results: TL50 for the males and the females, respectively, ranged from 103.9 cm (Acanthurus triostegus ) to 1,119.3 cm (Thyrsitoides marleyi ) and from 111.7 cm (A. triostegus ) to 613.1 cm (Centrophorus moluccensis ). The reproduction period could be very different between the species from the very tight peak to a large peak covered all months. Conclusions: Most species breed between October and March but it was not the trend for all species around La Réunion Island.
        4,000원
        12.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.
        4,000원
        13.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pharmaceutical products occurring in freshwater bodies create numerous problems for the water bodies owing to their bio-toxic nature. In order to remove such pharmaceutical pollutants, a novel Er-doped Bi4O5Br2/ g-C3N5 nanocomposite was prepared by one-pot synthesis and applied for the photocatalytic removal process. The Er ions doped on the surface of Bi4O5Br2/ g-C3N5 nanocomposite exhibited 97% degradation of tetracycline in 60 min under visible light irradiation, which is higher than pure g-C3N5 and Bi4O5Br2 photocatalysts. The improved photocatalytic properties are attributed to the outstanding visible light harvesting capacity and quick charge carrier separation efficiency which greatly reduced the recombination rate in the heterojunctions. Based on radical trapping experiments, the •O2 −, h+ and •OH radicals played a prominent role in the photodegradation reactions under visible light. Finally, the ternary Er-doped Bi4O5Br2/ g-C3N5 nanocomposite is effectively recyclable with quite a stable photocatalytic removal rate. This work enables a new perspective on the rational design of rare-earth-based nanocomposites for various pharmaceutical pollutants treatment processes.
        4,000원
        14.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO2 activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO2 adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO2 storage systems.
        4,500원
        15.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanofibers (CNFs) are promising materials for the construction of energy devices, particularly organic solar cells. In the electrospinning process, polyacrylonitrile (PAN) has been utilized to generate nanofibers, which is the simplest and most popular method of creating carbon nanofibers (CNFs) followed by carbonization. The CNFs are coated on stainless steel (SS) plates and involve an electropolymerization process. The prepared Cu, CNF, CNF–Cu, PANI, PANI–Cu, CNF–PANI, and CNF–PANI–Cu electrode materials’ electrical conductivity was evaluated using cyclic voltammetry (CV) technique in 1 M H2SO4 electrolyte solution. Compared to others, the CNF–PANI–Cu electrode has higher conductivity that range is 3.0 mA. Moreover, the PANI, CNF–PANI, and CNF–PANI–Cu are coated on FTO plates and characterized for their optical properties (absorbance, transmittance, and emission) and electrical properties (CV and Impedance) for organic solar cell application. The functional groups, and morphology-average roughness of the electrode materials found by FT–IR, XRD, XPS, SEM, and TGA exhibit a strong correlation with each other. Finally, the electrode materials that have been characterized serve to support and act as the nature of the hole transport for organic solar cells.
        4,500원
        16.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Black phosphorus (BP) is incorporated in the electrochemical detection of uric acid (UA) to form few layers of BP nanosheets (BPNS)-modified glassy carbon electrodes (BPNS/GCE), investigated by means of ultrasound-assisted liquid-phase exfoliation. We find a significant increase in the peak current magnitude and positive potential shift in the electrochemical response of BPNS/GCE, which may be attributed to the larger specific surface area and good charge transfer ability of BPNS. Further, the electrochemical response of BPNS/GCE is evaluated under different conditions to achieve the optimal conditions. UA detection using differential pulse voltammetry (DPV) shows linear response within the range of 1–1000 μM with a detection limit of 0.33 μM. This work reveals new applications of BP nanomaterials in the electrochemical sensing, thereby promoting further advancement in terms of practical applications of two-dimensional nanomaterials.
        4,000원
        17.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The primary therapeutic approach for Brucella species infections has mainly been based on antibiotic treatment. However, the development of vaccines for brucellosis control remains controversial. Furthermore, there is currently no licensed vaccine available for human brucellosis. This study aims to evaluate the effect of a combination of recombinant protein vaccines against Brucella (B.) abortus infection using a mouse model. Two B. abortus genes, namely dapB and gpm, were cloned and expressed in competent Escherichia (E.) coli DH5α using the pCold-TF vector. Successfully cloned vectors were subjected to PCR amplification using specific primer pairs. The apparent sizes of dapB and gpm were detected at 807 bp and 621 bp, respectively. Besides, the purified recombinant proteins dapB and gpm were detected using SDS-PAGE electrophoresis with correct sizes of 82.86 kDa and 87.61 kDa, respectively. These recombinant proteins were used to immunize mice as a combined subunit vaccine (CSV) to elicit host immunity against B. abortus infection. Mice immunized with CSV exhibited increased proliferation of CD4+ and/or CD8+ T cells at week 7th and 9th before sacrifice, in comparison to the control group. Notably, CSV immunization showed a significant decrease in bacterial burden in the spleen compared to the control group. Altogether, CSV using dapB and gpm induced host adaptive immune response against Brucella infection, suggesting its potential as an effective new subunit vaccine candidate.
        4,000원
        19.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper evaluates the adsorptive removal of sunset yellow (SY) from aqueous solutions using a new magnetic glycodendrimer (MGD). To synthesize the MGD, chitosan dendrons were cultivated on amine-functionalized magnetic graphene oxide. A number of analytical methods were employed to physicochemically characterize the synthesized MGD. Batch adsorption conditions were optimized using the Box–Behnken design. An optimized initial SY content of 633 mg/L, an optimized contact time of 33.37 min, and an optimized pH of 3.72 maximized the MGD adsorption capacity to 485 mg/g. The Langmuir isotherm was employed to describe adsorption equilibrium, while adsorption kinetics was studied via the Lagergren kinetics model. The SY adsorption onto the MGD was thermodynamically found to be spontaneous (ΔG° < 0) and exothermic (ΔH° = – 19.120 kJ/mol), leading to a decreased disorder (ΔS° = – 54.420 kJ/mol) in the solid–liquid interface. The MGD showed reusability and unique magnetic characteristics. It was concluded that the MGD could be a potential alternative for the adsorptive and magnetic removal of SY from an aqueous solution.
        5,500원
        20.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, norepinephrine (NE) was determined by an electrochemical sensor represented by a carbon paste electrode boosted using nitrogen-doped porous carbon (NDPC) derived from Spirulina Platensis microalga anchored CoFe2O4@ NiO and 1-Ethyl-3-methylimidazolium acetate (EMIM Ac) ionic liquid. The morphological characteristics of the catalyst were recorded by field emission scanning electron microscope (FE-SEM) images. Moreover, the electrochemical behavior of norepinephrine on the fabricated electrode was checked using various voltammetric methods. All tests were done at pH 7.0 as the optimized condition in phosphate buffer solution. The results from linear sweep voltammetry revealed that the electro-oxidation of norepinephrine was diffusion, and the diffusion coefficient value was obtained by chronoamperometry (D⁓6.195 × 10– 4). The linear concentration of the modified electrode was obtained from 10 to 500 μM with a limit of detection of 2.26 μM using the square wave voltammetry (SWV) method. The sensor selectivity was investigated using various species, and the results from stability and reproducibility tests showed acceptable values. The sensor's efficiency was tested in urine and pharmaceutical as real samples with recovery percentages between 97.1% and 102.82%.
        4,200원
        1 2 3 4 5