검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 519

        241.
        2010.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present case study highlights the effects of a novel Comprehensive Hand Repetitive Intensive Strengthening Training (CHRIST) on morphological changes and associated upper extremity (UE) muscle strength and motor performance in a child with spastic quadriplegic cerebral palsy (CP). The Child, a 10-year-old girl with spastic quadriplegic CP, was treated with CHRIST for 60 minutes a day, five times a week, for 5 weeks. The CHRIST was designed to improve motor function and strength. Clinical tests including the modified Wolf Test, Jebsen-Taylor Hand Function Test, and Pediatric Motor Activity Log questionnaire were used to determine motor function. Ultrasound imaging was performed to determine the changes in the cross-section area (CSA) of the extensor carpi radialis (ECR) and triceps brachii (TRI). Muscle strength was measured with a dynamometer at pretest, and post-test, and 3-month follow-up. Ultrasound imaging data showed that the CSAs of both ECR and TRI muscles were enhanced as a function of the intervention. These changes were associated with muscle strength and motor performance and their effects remained even at a 3-month follow-up test. Our results suggest that the CHRIST was effective at treating muscle atrophy, weakness and motor dysfunction in a child with spastic quadriplegic CP.
        4,200원
        244.
        2010.10 구독 인증기관·개인회원 무료
        Ascotis selenaria, a major geometridae moth in citrus trees, annually damages the citrus leaves and fruits. The surface of young citrus fruit were usually fed by 1st larva of A. selenaria after landing or stepping onto the citrus fruits. To protect the larval damages of citrus fruits needs to predict the accurate occurrence time of the 1st larva for spraying. Because larval occurrences is dependent on the oviposition of adult female and the eggs were not found in/on citrus trees, oviposition model of A. selenaria linked with the egg development model will be helpful of protecting larval damages on citrus fruits. Adult longevity, survival and fecundity of A.selenaria was investigated at 13, 16, 20, 24, 28, 30, 32, and 35℃. The longevity decreased as the temperature increased and the female development rates (1/median longevity) were well described by a modified sigmoid model, which was used to calculate the adult physiological age. Description of the total fecundity was used by a non-linear model: The maximum fecundity of A. selenaria was estimated as 2490 eggs and peaked temperature was 19.7℃ according to the fecundity model. The cumulative age-specific oviposition rate and the age-specific survival rate was well described by 2 parameters Weibull function and a reverse logistic curve respectively. Total fecundity model, age-sepecific oviposition model, and age-specific survival model were incorporated into the oviposition model.
        245.
        2010.06 구독 인증기관 무료, 개인회원 유료
        Microbial lipopolysaccharide (LPS) is an endotoxin conveying the surface receptor complex of toll-like receptor 4 (TLR4)-myeloid differentiation 2 (MD-2) in innate immune cells through ancillary proteins such as LPS-binding protein and CD14. However, TLR4 alone is not sufficient for recognition of LPS. MD-2 is essential for sensing the lipid A domain of LPS and for triggering LPS-induced TLR4 activity across the plasma membrane. Therefore, lipid A domain and its binding to MD-2 are potential drug targets for intervention in endotoxemia as well as other disorders associated with LPS etiology. Here, we reviewed MD-2 as a drug target focused on drug candidates-targeting TLRs, transport of microbial LPS into TLR4/MD-2, crystal structure of TLR4/MD-2 alone, crystal structure of TLR4/MD-2 with bound LPS, lipid A derivatives as MD-2 antagonist, non-lipid antagonists of LPS binding to MD-2, and human disorders-implicated with TLR4/ MD-2. This review could be helpful to understanding the biology of TLR4/MD-2, and suggests the importance of MD-2 as a therapeutic target against inflammatory diseases due to infection.
        4,000원
        246.
        2010.06 구독 인증기관 무료, 개인회원 유료
        The discovery of antibiotics has helped to save the lives of an uncountable number of people. Antibiotics have been grouped in different classes based on their origin, structure, and mechanism of action. An intrinsic and acquired mechanism of antimicrobial resistance has been identified in many bacterial strains that are of high clinical importance. This has seriously jeopardized the use of antibiotics and has also caused the spread of microbes that are resistant to effective first-choice, or “first-line” drugs. Thus, sensible use of antibiotics and the search for effective alternative measures are of high importance in order to minimize the effect due to existing and emerging antimicrobial resistant microbes.
        4,900원
        249.
        2009.10 구독 인증기관·개인회원 무료
        14-3-3 proteins are known to play a pivotal role in a diverse array of cellular events such as cell survival, apoptosis, and signal transduction. Numerous 14-3-3 ζ have been cloned and characterized from a host of eukaryotic organisms including human, plants, yeast, fruit fly and silkworm. However, no study on Spodoptera exigua 14-3-3ζ in conjunction with virus infection has so far been reported in insects. It appears that expression of Se14-3-3ζ was decreased starting 24 h post-SeNPV infection as SeNPV titers seemed to increase as evidenced by intense bands of SeNPV IAP3. Interestingly, confocal microscopic analysis revealed that Se14-3-3ζ is expressed at the apical side of the NPV-uninfected gut cells, whereas it was detected mainly in the nucleus of the NPV-infected cells. Thus, despite the biological significance of Se14-3-3ζ in S. exigua in conjunction with molecular interactions between SeNPV and S. exigua is unclear now, our data suggest that Se14-3-3 ζ protein plays a role to protect S. exigua from the infection or inhibit replication of SeNPV.
        250.
        2009.10 구독 인증기관·개인회원 무료
        Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is known to play a pivotal role in various cellular events and antiviral responses in both vertebrates and insects. In an attempt to elucidate the potential involvement of STAT on S. exigua-SeNPV interactions, the full length cDNA of SeSTAT was cloned from S. exigua. Analysis of temporal expression patterns shows that SeSTAT is expressed in all stages of life cycle such as larvae, pupae, and adult. Spatial expression analysis shows that it is highly expressed in fat body and Malpighian tubule. Interestingly, SeSTAT is induced at 24 h in response to either laminarin or LTA injection in larvae. Electrophoretic mobility shift assay (EMSA) shows that the binding of nuclear extracts from fat body cells immune-challenged with LTA to STAT5 probe was observed. In addition, SeSTAT was nuclear-translocalized in both fat body and gut cells that were challenged with LTA and laminarin, respectively. Finally, gene silencing of SeSTAT shows that SeNPV number appears to be increased. It suggests that SeSTAT may act as a negative regulator against SeNPV in midgut.
        251.
        2009.10 구독 인증기관·개인회원 무료
        Deciduous tree fruits such as pears and apples are widely grown in the Pacific Northwest of the United States and are well adapted to the seasonal environment in that region. Extended cold periods provide adequate chilling to break dormancy and reinitiate growth in the spring. Cold exposure synchronizes the physiological processes and makes sure that bloom is uniform and that fruit matures in a uniform manner. As a result of global warming, some fruit-growing areas may experience inadequate cold exposure during the winter months, gradually shifting the southern boundary for production of deciduous fruits further north. However, climate change will affect not only growth and fruiting habits of fruit trees but also the insect and mite pests which feed on them. There is general agreement that in temperate regions a trend towards warmer summers and milder winters will generally benefit insect and mite pests and increase their injuriousness. Temperature changes in particular will impact the development, mortality, phenology, and voltinism of fruit pests. Here we discuss how climate change may affect pests and control practices on deciduous tree fruits in the Hood River Valley of northern Oregon. This small valley extends in a north-south direction from the Columbia River to the foothills of Mt. Hood and is characterized by a varied topography and large altitudinal differences (sea level to 600 m). The major pest of pears and apples in that area is codling moth, Cydia pomonella L., a cosmopolitan pest which is present in most deciduous fruit-growing areas of the world. Like its host trees, the codling moth is well adapted to a seasonal environment. Diapause is the principal mechanism which synchronizes its phenology with the tree and the presence of fruit, the larval food source. Diapausing overwintering larvae require cold exposure (chilling) to terminate diapause in late winter or early spring. At the lower elevations close to the Columbia River the codling moth is bivoltine but gradually becomes univoltine at the higher elevations where the growing season is shorter and fewer heat units (above 10oC) are available for development. Long-term temperature records from the lower Hood River Valley indicate that the 25 years since 1985 have been considerable warmer than the 25 years prior to 1985. For instance, the average heat units available for codling moth development over a season have increased by more than 10% over the last 25 years. The codling moth is adapting to this warming trend by gradually increasing its voltinism (number of generations). As a result, the severity of codling moth as a pest can be expected to increase. Therefore, fruit growers will have to adjust and intensify control practices to keep fruit free from codling moth damage. We will also explore how other fruit and foliage feeding pests which are part of the pest complex of pears and apples in northern Oregon fare under different global warming scenarios compared to codling moth.
        252.
        2009.06 구독 인증기관 무료, 개인회원 유료
        The Notch signaling pathway regulates cell proliferation, apoptosis and cell fate decision. Recent preclinical and clinical evidence supports a pro-oncogenic function for Notch signaling in several solid tumors including breast and prostate cancer. Consequently, there is increasing interest in targeting Notch signaling therapeutically in cancer patients. Notch inhibitors, particularly gamma-secretase inhibitors, are being investigated as candidate cancer therapeutic agents. However, rational targeting of Notch signaling in cancer will require a systematic exploration of several areas that remain incompletely understood. Therefore, a clear understanding of the Notch signaling and its cross-talk with other signaling cascade will increase our ability to design rational combination regimens for cancer therapy.
        4,000원
        255.
        2009.05 구독 인증기관·개인회원 무료
        Root knot nematode species, such as Meloidogyne hapla, M. incognita, M. arenaria and M. javanica are economically most notorious nematode pests, causing serious damage to the various crops throughout world. In this study, DNA sequence analyses of the D1-D3 expansion segments of the 28S gene in the ribosomal DNA were conducted to characterize genetic variation of the four Meloidogyne species obtained from Korea and United States. PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism), SCAR (Sequence Characterized Amplified Region) marker and RAPD (Random Amplification of Polymorphic DNA) also were used to develop the methods for exact and rapid species identification. In the sequence analysis of the D1-D3 expansion segments, only a few nucleotide sequence variation were detected among M. incognita, M. arenaria, and M. javanica, except for M. hapla. The PCR-RFLP analysis that involves amplification of the mitochondrial COII and lrRNA region yielded one distinct amplicon for M. hapla at 500 bp, enabling us to distinguish M. hapla from M. incognita, M. arenaria, M. javanica reproduced by obligate mitotic parthenogenesis. SCAR markers successfully identified the four root knot nematode species tested. We are under development of RAPD primers specific to the three root knot nematodes found in Korea.
        256.
        2009.05 구독 인증기관·개인회원 무료
        Two cherry tomato plant cultivars (Lycopersicon esculentum Miller, cultivars ‘Koko’ and ‘Pepe’) were supplied with high (395 ppm), medium (266 ppm) and low (199 ppm) concentrations of nitrogen to determine the influence of nitrogen fertilization on development, cultivar preference and honeydew production by greenhouse whiteflies, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). The nitrogen, protein, andchlorophyll content of tomato leaves were higher in the high nitrogen supplied plants than in the medium or low nitrogen supplied plants, but the sugar content showed an inverse relationship. The developmental times of eggsand nymphs decreased as the nitrogen concentrations increased in both cultivars. The preference of T. vaporariorum was compared by counting the number of eggs deposited on leaves in choice and non-choice tests. In the non-choice test, no significant nitrogen treatment effects were observedbut the upper plant stratum was preferred for egg laying. In the choice test, there were significant main effects of cultivar and nitrogen concentration. T. vaporariorum laid eggs more on leaves of plants with higher nitrogen at the upper stratum. In both experiments, T, vaporariorum preferred the ‘Koko’ cultivar to the ‘Pepe’ cultivar. The honeydew production of T. vaporariorum nymphs increased with decreasing nitrogen treatment concentrations. The largest honeydew production was detected in the ‘Pepe’ cultivar grown at low nitrogen concentration. It is concluded that cultivar ‘Pepe’ had an advantage over ‘Koko’ in term of T. vaporariorum management program in tomato greenhouses.
        257.
        2009.05 구독 인증기관·개인회원 무료
        The root zone applications of a systemic insecticide, carbofuran, were evaluated for their impacts on the brown planthopper, Nilaparvata lugens (Stål), and spider populations in the greenhouse and rice paddy fields. In the green house experiments, no BPH nymphs were hatched at root zone treated on 40 to 50 day-old rice, while around 20 to 54 nymphs per pot were emerged in broadcasting and foliar spray treatments. This indicates that the root zone treatment can kill the eggs of BPH effectively. This is the first study ever demonstrated the high egg mortality of BPH due to the root-zone application. In the field experiments, the density of BPH in root zone treated plots were four to six times lower than in broadcasting and foliar spray plots at the 21 days after application. The BPH outbreaks and hopper-burns were observed at all treatments except the root zone treated plot at the 28 days after application. The root-zone application did not impact on the spider population, while foliar spray killed most of all spiders just one day after application. The densities of spider in foliar spray plots were always lower than in root-zone treated and control plots. The results indicated that the root-zone application of carbofuran can control BPH effectively without adverse effects to the spiders inhabited on the paddy field.