Radionuclides in low- and intermediate-level radioactive wastes from the decommissioning process of nuclear power plants were generally immobilized by cementation methods. Ethylenediaminetetraacetic acid (EDTA), which is extensively used as a decontamination agent, can affect the behaviors of radionuclides immobilized in cement waste forms. In this study, the effects of EDTA contained in simulated radioactive decommissioning wastes on the leaching characteristics of immobilized Co and Cs and the microstructure evolution of cement waste form. Co leaching was accelerated by the formation of Co–EDTA complexes with high mobility and solubility. Cs leaching was hindered by the ion competition with other metal–EDTA complexes for releasing from the cement waste form. Cs leaching was also retarded by carbonated layer at edge of the cement waste form, which process is facilitated by the presence of EDTA. Finally, the effects of EDTA on the leaching characteristics of immobilized Cs and Co and the microstructure evolution of the cement waste form should be considered to ensure the safety of disposal for lowand intermediate-level radioactive wastes.
Natural analogue studies aim to understand specific processes or to make predictions regrading formation processes or environmental conditions based on information from natural phenomena on Earth. Studying geological environments similar to the disposal system can help evaluate the longterm stability of the disposal system. These studies play a crucial role in evaluating the long-term stability of deep geological repositories (DGRs) for high-level radioactive wastes, which must remain stable for extended periods. In particular, bentonite, as a vital buffer material in DGRs, is mainly composed of montmorillonite and undergoes a transformation into zeolite under specific environmental conditions, resulting in the loss of its role as a buffer material in terms of swelling property and hydraulic conductivity. In this study, bentonite samples from Pohang Basin in Korea were investigated, revealing the presence of montmorillonite and zeolite in both outcrop and drilling core samples. While it has been known that montmorillonite and zeolites can form from volcanic glass through diagenesis or hydrothermal alteration, this study revealed that these minerals are formed under distinct environmental conditions. The outcrop samples primarily consisted of montmorillonite with minor quantities of cristobalite and amorphous silicate minerals. In contrast, the drilling core samples were composed of montmorillonite, zeolites, quartz and feldspar, indicating different mineral assemblages and characteristics between the outcrop and drilling samples. This observation suggests different environmental conditions during the mineral formation process. Therefore, various experiments and analytical methods were employed to gain a deeper understanding of the phase transformation from montmorillonite to zeolites under diverse environmental conditions
The solid-state chemistry of uranium is essential to the nuclear fuel cycle. Uranyl nitrate is a key compound that is produced at various stages of the nuclear fuel cycle, both in front-end and backend cycles. It is typically formed by dissolving spent nuclear fuel in nitric acid or through a wet conversion process for the preparation of UF6. Additionally, uranium oxides are a primary consideration in the nuclear fuel cycle because they are the most commonly used nuclear fuel in commercial nuclear reactors. Therefore, it is crucial to understand the oxidation and thermal behavior of uranium oxides and uranyl nitrates. Under the ‘2023 Nuclear Global Researcher Training Program for the Back-end Nuclear Fuel Cycle,’ supported by KONICOF, several experiments were conducted at IMRAM (Institute of Multidisciplinary Research for Advanced Materials) at Tohoku University. First, the recovery ratio of uranium was analyzed during the synthesis of uranyl nitrate by dissolving the actual radioisotope, U3O8, in a nitric acid solution. Second, thermogravimetric-differential thermal analysis (TG-DTA) of uranyl nitrate (UO2(NO3)2) and hyper-stoichiometric uranium dioxide (UO2+X) was performed. The enthalpy change was discussed to confirm the mechanism of thermal decomposition of uranyl nitrate under heating conditions and to determine the chemical hydrate form of uranyl nitrate. In the case of UO2+X, the value of ‘x’ was determined through the calculation of weight change data, and the initial form was verified using the phase diagram for the U-O system. Finally, the formation of a few UO2+X compounds was observed with heat treatment of uranyl nitrate and uranium dioxide at different temperature intervals (450°C-600°C). As a result of these studies, a deeper understanding of the thermal and chemical behavior of uranium compounds was achieved. This knowledge is vital for improving the efficiency and safety of nuclear fuel cycle processes and contributes to advancements in nuclear science and technology.
One of cosmopolitan pest, Agrotis ipsilon, causes serious economic damages in horticultural crops. This study compared the host fitness of A. ipsilon among nine major horticultural crops in Korea. Among the nine crops, the population of A. ipsilon failed to complete its development in spinach, cucumber, melon, and kidney bean. The host effects on development and reproduction of A. ipsilon were further investigated in the remained five crops. Host plants significantly (P < 0.05) affected the development-related factors of A. ipsilon eggs, larvae, and pupae. They also affected the adult reproduction-related factors including preoviposition period, oviposition period and number, and longevity except for the prepupa stage. A positive relationship was found be tween biological factors. Among the nine crops in this study, napa cabbage showed the highest suitability for the A. ipsilon populations. These findings in this study would be helpful to understand the ecology and develop the man agement tactics of A. ipsilon in horticultural crops.
The rate of resistant pest emergence has accelerated due to the continuous use of pesticides. Therefore, it is important to formulate insecticide resistance management measures and effective control methods for pest. Bemisia tabaci, a greenhouse pest, causes direct damage to crops such as growth inhibition and leaf discoloration at all developmental stages except for eggs. It also indirectly damages plants by secreting honeydew, which covers surrounding leaves and fruits, leading to sooty mold development. In this study, eight insecticides with high usage rates, categorized by their mode of action, were selected. Samples of Bemisia tabaci were collected from six regions, and resistance analysis were conducted. The results showed that Flonicamid exhibited a resistance ratio of 8.91 in Sejong, while Pyriproxyfen showed a high resistance ratio of 63.56 in Gunwi. Fluxametamide, Spinetoram, Cyantraniliprole, Dinotefuran, Pyridaben, and Milbemectin displayed resistance ratio ranging from 0.02 to 1.14 in most regions, except for Flonicamid and Pyriproxyfen.
Honey bees are crucial pollinators for agricultural and natural ecosystems, but are experiencing heavy mortality in Korea due to a complex suite of factors. Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. Finding solutions involves knowing the factors associated with high loss rates. To investigate whether loss rates are related to Varroa control and climate condition, we surveyed beekeepers in korea after wintering (2021–2022 to 2022–2023). The results show an average colony loss rate of 46%(2022) and 17%(2023), but over 40% colony loss before wintering at 2022. Beekeepers attempt to manage their honey bee colonies in ways that optimize colony health. Disentangling the impact of management from other variables affecting colony health is complicated by the diversity of practices used and difficulties handling typically complex and incomplete observational datasets. We propose a method to 1) Varroa mite population Control by several methods , and 2) Many nursing bee put in hive before wintering.
This study was aimed to isolate bacterial inoculants producing chitinase and evaluate their application effects on corn silage. Four corn silages were collected from four beef cattle farms to serve as the sources of bacterial inoculants. All isolates were tested against Fusarium graminearum head blight fungus MHGNU F132 to confirm their antifungal effects. The enzyme activities (carboxylesterase and chitinase) were also measured to isolate the bacterial inoculant. Based on the activities of anti-head blight fungus, carboxylesterase, and chitinase, L. buchneri L11-1 and L. paracasei L9-3 were subjected to silage production. Corn forage (cv. Gwangpyeongok) was ensiled into a 10 L mini silo (5 kg) in quadruplication for 90 days. A 2 × 2 factorial design consists of F. graminearum contamination at 1.0104 cfu/g (UCT (no contamination) vs. CT (contamination)) and inoculant application at 2.1 × 105 cfu/g (CON (no inoculant) vs. INO (inoculant)) used in this study. After 90 days of ensiling, the contents of CP, NDF, and ADF increased (p<0.05) by F. graminearum contamination, while IVDMD, acetate, and aerobic stability decreased (p<0.05). Meanwhile, aerobic stability decreased (p<0.05) by inoculant application. There were interaction effects (p<0.05) on IVNDFD, NH3-N, LAB, and yeast, which were highest in UCT-INO, UCT-CON, CT-INO, and CT-CON & INO, respectively. In conclusion, this study found that mold contamination could negatively impact silage quality, but isolated inoculants had limited effects on IVNDFD and yeast.
Large amounts of waste and wastewater from aquaculture have negatively impacted ecosystems. Among them, shrimp aquaculture wastewater contains large amounts of nitrogen contaminants derived from feed residues in an aerobic environment. This study isolated candidate strains from adult rockworms to treat shrimp aquaculture wastewater (SAW) in an aerobic environment. Among 87 strains isolated, 25 grew well at the same temperature as the shrimp aquaculture with excellent polymer degradation ability (>0.5 cm clear zone). Six isolates (strains AL1, AL4, AL5, AL6, LA10, and PR15) were finally selected after combining strains with excellent polymer degradation ability without antagonism. 16S rRNA sequencing analysis revealed that strains AL1, AL4, AL5, AL6, LA10, and PR15 were closely related to Bacillus paramycoides, Bacillus pumilus, Stenotrophomonas rhizophila, Bacillus paranthracis, Bacillus paranthracis, and Micrococcus luteus, respectively. When these six isolates were applied to SAW, they reached a maximum cell viability of 2.06×105 CFU mL-1. Their chemical oxygen demand (CODCr) and total nitrogen (TN) removal rates for 12 h were 51.0% and 44.6%, respectively, when the CODCr/TN ratio was approximately 10.0. Considering these removal rates achieved in this study under batch conditions, these six isolates could be used for aerobic denitrification. Consequently, these six isolates from rockworms are good candidates that can be applied to the field of aquaculture wastewater treatment.
In the event of a radioactive release, it is essential to quickly detect and locate the source of the release, as well as track the movement of the plume to assess the potential impact on public health and safety. Fixed monitoring posts are limited in their ability to provide a complete picture of the radiation distribution, and the information they provide may not be available in real-time. This is why other types of monitoring systems, such as mobile monitoring, aerial monitoring, and personal dosimeters, are also used in emergency situations to complement the information provided by fixed monitoring posts. Also, the monitoring system can be improved by using the Kriging technique, which is one of the interpolation methods, to predict the radiation dose in the relevant districts. This can be achieved by utilizing both the GPS information and the radiation dose measured at a particular point. The Kriging method involves estimating the value between different measurement points by considering the distance between them. The model used GPS and radiation data that were measured around the Hanbit NPP. The data were collected using a radiation measuring detector on a bus that traveled around the NPP area at 2-second intervals for one day. From the collected data, 200 data points were randomly selected for analysis, excluding the data measured at the bus garage out of a total of 16,550 data points. The average dose of the daily measurement data was 117.94 nSv/h, and the average dose of the 200 randomly extracted data was 119.17 nSv/h. The GPS and radiation dose data were utilized to predict the radiation dose around the Yeonggwang area where the Hanbit NPP is located. In the event of an abnormal release of radioactive material, it can be difficult to accurately determine the dose unless a monitoring measurement point is present. This can delay the rapid evacuation of residents during an emergency situation. By utilizing the Kriging model to make predictions, it is anticipated that more accurate dose predictions can be generated, particularly during accident scenarios. This can aid in the development of appropriate resident protection measures.
Transport packages have been developed to transport the decommissioning waste from the nuclear power plant. The packages are classified with Type IP-2 package. The IAEA requirements for Type IP-2 packages include that a free drop test should be performed for normal conditions of transport. In this study, drop tests of the packages were performed to prove the structural integrity and to verify the reliability of the analysis results by comparing the test and analysis results. Half-scale models were used for the drop tests and drop position was considered as 0.3 m oblique drop on packages weighing more than 15 tons. The strain and impact acceleration data were obtained to verify the reliability of the analysis results. Before and after the drop tests, radiation shielding tests were performed to confirm that the dose rate increase was within 20% at the external surface of the package. Also, measurement of bolt torque, and visual inspection were performed to confirm the loss or dispersion of the radioactive contents. After each drop test, slight deformations occurred in some packages. However, there was no loss of pretension in the lid bolts and the shielding thickness was not reduced for metal shields. In the package with concrete shield, the surface dose rate did not increase and there was no cracks or damage to the concrete. Therefore, the transport packages met the legal requirements (no more than a 20% increase of radiation level and no loss or dispersion of radioactive contents). Safety verifications were performed using the measured strain and acceleration data from the test, and the appropriate conservatism for the analysis results and the validity of the analysis model were confirmed. Therefore, it was found that the structural integrity of the packages was maintained under the drop test conditions. The results of this study were used as design data of the transport packages, and the packages will be used in the NPP decommissioning project in the future.
Bentonite is a potential buffer material of multi-barrier systems in high-level radioactive wastes repository. Montmorillonite, the main constituent of the bentonite, is 2:1 type aluminosilicate clay mineral with high swelling capacity and low permeability. Montmorillonite alteration under alkaline and saline conditions may affect the physico-chemical properties of the bentonite buffer. In this study, montmorillonite alteration by interaction with synthetic alkaline and saline solution and its retention capacity for cesium and iodide were investigated. The experiments were performed in three different batches (Milli-Q water, alkaline water, and saline water) doped with cesium and iodide for 7 days. Alteration characteristics and nuclide retention capacity of original- and reacted bentonite was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), Nuclear Magnetic Resonance (NMR) and Cation Exchange Capacity (CEC) analysis. From the results, cesium retention occurred differently depending on the presence of competing ions such as K, Na, and Mg ions in synthetic solutions, while iodide was negligibly removed by bentonite. Montmorillonite alteration mainly occurred as cation exchange and zeolite minerals such as merlinoite and mordenite were new-formed during alkaline alteration of the montmorillonite. CEC value of reacted bentonite increased by formation of the zeolite minerals under alkaline conditions.
시금치의 주요 해충인 흰띠명나방(Spoladea recurvalis) 유충의 살충제 5종에 대한 감수성을 검정하였다. Lufenuron EC, chromafenozide EC, chlorantraniliprole WP, tebufenozide WP, pyridalyl EW는 각각 2(12.5 ppm), 4(12.5 ppm), 8(2.5 ppm), 4(20.0 ppm), 8(12.5 ppm)배 의 희석농도에서 90% 이상의 높은 살충활성을 보였다. 추천농도로 경엽처리 후 7일이 경과된 시금치 잎에 흰띠명나방 유충이 72시간 동안 노출되 었을 경우 chromafenozide EC, chlorantraniliprole WP, tebufenozide WP, pyridalyl EW의 살충률은 각각 98.3%, 100%, 95.0%, 100%로 나타나 높은 잔효성을 보였다. 흰띠명나방에 대한 방제효과를 2개소(화성, 연천)에서 포장검정 결과, 5종의 약제 모두 2개소에서 약제처리 7일 경과 후 90% 이상의 방제효과를 보였으며 2배량에서도 약해가 없어 향후 흰띠명나방 방제약제로 시금치에 활용이 가능할 것으로 판단된다.
Republic of Korea (ROK) is operating the Integrated Environmental Radiation Monitoring Network (IERNet) in preparation for a radioactive emergency based on Article 105 of the Nuclear Safety Act (Monitoring of Nationwide Radioactive Environment). 215 radiation monitoring posts are monitoring a wide area, but their location is fixed, so they can’t cover areas where the post is not equipped around the Nuclear Power Plants (NPPs). For this, a mobile radiation monitoring system was developed using a drone or vehicle. However, there are disadvantages: it is performed only at a specific cycle, and an additional workforce is required. In this study, a radiation monitoring system using public transportation was developed to solve the above problems. Considering the range of dose rates from environmental radiation to high radiation doses in accidents, the detector was designed by combining NaI (TI) (in the low-dose area) and GM detector (in the high-dose area). Field test was conducted by installed on a city bus operated by Yeonggwang-gun to confirm the performance of the radiation monitoring system. As a result of the field test, it was confirmed that data is transmitted from the module to the server program in both directions. Based on this study, it will be possible to improve the radiation monitoring capability near nuclear facilities.
Waste containers for packaging, transportation and disposal of NPP (Nuclear Power Plant) decommissioning wastes are being developed. In this study, drop tests were conducted to prove the safety of containers for packaging of the wastes and to verify the reliability of the analysis results by comparing the test and analysis results. The drop height of the waste containers was considered to be 30 mm, which is the maximum lifting speed of a 50 tons crane in the waste treatment facility converted to the drop height. Drop orientation of the containers was considered for bottom-end on drop. The impact acceleration and strain data were obtained to verify the reliability of the analysis results. Before and after the drop tests, measurement of the dose rate and the radiographic testing for concrete wall, and measurement of the wall thickness of steel plate were conducted to evaluate the radiation shielding integrity. Also, measurement of bolt torque, and visual inspection were conducted to evaluate the loss or dispersion of radioactive contents. After the drop tests, the radiation dose rate on the container surface did not increase by more than 20%, and there was no crack in the concrete. In addition, the thickness of the steel plate did not change within the measurement error. Therefore, the radiation shielding integrity of the container was maintained. After the drop tests, the lid bolts were not damaged and there was no loss of pretension in the lid bolts. In addition, there was no loss or dispersion of the contents as a result of visual inspection. In order to prove the reliability of the drop analysis results, safety verifications were performed using the drop test results, and the appropriate conservatism for the analysis results and the validity of the analysis model were confirmed. Therefore, the structural integrity of the waste containers was maintained under the drop test conditions.