검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,512

        21.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.
        4,300원
        22.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report a new route of akaganéite (β-FeOOH) formation and maghemite (γ-Fe2O3) formation. Akaganéite can be produced by stirring Fe2+ at room temperature for a day under mild conditions. We used FeCl2 ·4H2O as the precursor and mixed it with the Na-rich particle from the oxidation debris solution. The role of the concentration ratio between graphene oxide (GO) and NaOH was addressed to generate oxidation debris (OD) on the surface. In particular, the characterization of OD by transmission electron microscope (TEM) imaging provides clear evidence for the crystal formation of Na-rich particle under electron beam irradiation. For the base treatment process, increasing the concentration of a NaOH in Na-rich solution contributed primarily to the formation of γ-Fe2O3. The characterization by scanning electron microscope (SEM) and TEM showed that the morphology was changed from needle-like to small-oval form. In addition, β-FeOOH can be effectively produced directly using GO combined with FeCl2 ·4H2O at room temperature. More specifically, the role of parent material (Hummer's GO and Brodie's GO) was discussed, and the crystal transformation was identified. Our results concluded that β-FeOOH can be formed in basic and acidic conditions.
        4,600원
        23.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To reduce production cost and inhibit the aggregation of graphene, graphene oxide and copper nitrate solution were used as raw materials in the paper. Cu particles were introduced to the graphene nanosheets by in-situ chemical reduction method in the hydrazine hydrate and sodium hydroxide solution, and the copper matrix composite reinforced with Cu-doped graphene nanosheets were fabricated by powder metallurgy. The synthesized Cu-doped graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The relative density, hardness, electrical conductivity and tensile strength of the copper matrix composite reinforced with Cudoped graphene were measured as well. The results show that copper ions and graphene oxide can be effectively reduced by hydrazine hydrate simultaneously. Most of oxygen functional groups on the Cu-doped graphene sheets can be removed dramatically, and Cu-doped graphene inhibit the graphene aggregation effectively. Within the experimental range, the copper matrix composites have good comprehensive properties with 0.5 wt% Cu-doped graphene. The tensile strength and hardness are 221 MPa and 81.6 HV, respectively, corresponding to an increase of 23% and 59% compared to that of pure Cu, and the electrical conductivity reaches up to 93.96% IACS. However, excessive addition of Cu-doped graphene is not beneficial for the improvement on the hardness and electrical conductivity of copper matrix composite.
        4,200원
        24.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers of polyacrylonitrile (PAN) type were coated with nickel nanoparticles using a chemical reduction method in alkaline hydrazine bath. The carbon fibers were firstly heated at 400 °C and then chemically treated in hydrochloric acid followed by nitric acid to clean, remove any foreign particles and functionalized its graphitic surfaces by introducing some functional groups. The functionalized carbon fibers were coated with nickel to produce 10 wt% Cf/Ni nanocomposites. The uncoated heat treated and the nickel coated carbon fibers were investigated by SEM, EDS, FTIR and XRD to characterize the particle size, morphology, chemical composition and the crystal structure of the investigated materials. The nickel nanoparticles were successfully deposited as homogeneous layer on the surface of the functionalized carbon fibers. Also, the deposited nickel nanoparticles have quazi-spherical shape and 128–225 nm median particle size. The untreated and the heat treated as well as the 10 wt% Cf/Ni nanocomposite particles were further reinforced in ethylene vinyl acetate (EVA) polymer separately by melt blending technique to prepare 0.5 wt% Cf-EVA polymer matrix stretchable conductive composites. The microstructures of the prepared polymer composites were investigated using optical microscope. The carbon fibers as well as the nickel coated one were homogenously distributed in the polymer matrix. The obtained samples were analyzed by TGA. The addition of the nickel coated carbon fibers to the EVA was improved the thermal stability by increasing the thermal decomposition temperature Tmax1 and Tmax2. The electrical and the mechanical properties of the obtained 10 wt% Cf/Ni nanocomposites as well as the 0.5 wt% Cf-EVA stretchable conductive composites were evaluated by measuring its thermal stability by thermogravimetric analysis (TGA), electrical resistivity by four probe method and tensile properties. The electrical resistivity of the fibers was decreased by coating with nickel and the 10 wt% Cf/Ni nanocomposites has lower resistivity than the carbon fibers itself. Also, the electrical resistivity of the neat EVA is decreased from 3.2 × 1010 to 1.4 × 104 Ω cm in case of the reinforced 0.5 wt% Cf/Ni-EVA polymer composite. However, the ultimate elongation and the Young’s modulus of the neat EVA polymer was increased by reinforcing with carbon fibers and its nickel composite.
        4,900원
        25.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have intended and preparation of hierarchically absorbent materials were covered with a NiMn2O4 and acts as a catalyst for azo dye degradation. The polyaromatic-based (PA) absorbent compounds were initially constructed by bromomethylated aromatic hydrocarbons which undergo self-polymerization in presence of ZnBr as a reagent and cross linker is bromomethyl methyl ether. The absorbent black materials with a 3D network were prepared by direct carbonization and activation of the as-prepared PA. The hydrothermal method was adapted for the preparation of carbon hybrid material C@NiMn2O4 powder's catalytic activity is effective in reducing p-nitrophenol to p-aminophenol and decolorizing carbon-based dyes like methyl orange (MO), methyl yellow (MY), and Congo red (CR) in aqueous media at 25 °C when NaBH4 is added. UV–visible spectroscopy was used to analyze the dyes' breakdown at regular interval.
        4,000원
        26.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, the epoxy material was mixed with 10%, and 30% weight percent carbon material as filler in different thicknesses (1 cm, 1.5 cm, and 2 cm). Transmission electron microscope (TEM) measurements showed the average size of the nano-carbon was 20 nm with a standard deviation of 5 nm. The morphology of samples was examined using scanning electron microscopy (SEM), which showed the flatness of the epoxy surface, and when the content of carbon increases, the connection between the epoxy array and carbon increases. The compression test indicates the effect of nano-size on enhancing the mechanical properties of the studied samples. To survey the shielding properties of the epoxy/carbon composites using gamma-rays emitted from Am-241, Ba-133, Cs-137, Co-60, and Eu-152 sources, which covered a wide range of energies from 0.059 up to 1.408 MeV, the gamma intensity was measured using the NaI (Tl) detector. The linear and mass attenuation coefficients were calculated by obtaining the area under each peak of the energy spectrum observed from Genie 2000 software in the presence and absence of the sample. The experimental results obtained were compared theoretically with XCOM software. The comparison examined the validity of experimental results where the relative division rate ranged between 0.02 and 2%. Also, the measurement of the relative division rate between linear attenuation coefficients of microand nano-composites was found to range from 0.9 to 21% The other shielding parameters are calculated at the same range of energy, such as a half-value layer (HVL), mean free path (MFP), tenth-value layer (TVL), effective atomic number (Zeff), and the buildup factors (EBF and EABF). The data revealed a consistent reduction in the particle size of the shielding material across various weight percentages, resulting in enhanced radiation shielding capabilities. The sample that contains 30% nano-carbon has the lowest values of TVL (29.4 cm) and HVL (8.85 cm); moreover, it has the highest value of the linear attenuation coefficient (LAC), which makes it the best in its ability to attenuate radiation.
        4,500원
        27.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A series of ZIF-67-C-IL catalysts were prepared using ZIF-67 and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([ BMIM]NTf2) ionic liquid as precursors. The structure of the catalysts was characterized by XRD, TEM, SEM and XPS. The catalytic performance of the catalysts for the oxygen reduction reaction (ORR) was evaluated in a three-electrode system. The results confirmed that the high-temperature treatment of the precursors resulted in the formation of N, S codoped carbon-encapsulated Co9S8 nanoparticles. To create N, S co-doped carbon coated Co9S8 nanoparticle catalysts, ionic liquids are used as sulfur and nitrogen sources. The catalytic activity of ORR can be improved using N, S co-doped carbon to prevent the aggregation of Co9S8 nanoparticles. Graphitized and N, S co-doped carbon shells are optimal for achieving high activity stability. Optimal 600-ZIF-67-C(1:1.5)-30IL catalytic activity was observed for ORR. The half-wave potential of ORR was 0.88 V vs. RHE in 0.1 mol L− 1 KOH, with a limit current density of 4.70 mA cm− 2. Similar ORR electrocatalytic activity was observed between this catalyst and commercial Pt/C (20 wt%).
        4,000원
        29.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM’s durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.
        4,300원
        30.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.
        4,000원
        31.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet’s randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.
        4,000원
        32.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.
        4,000원
        33.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Because most spent nuclear fuel storage casks have been designed for low burnup fuel, a safety-significant high burnup dry storage cask must be developed for nuclear facilities in Korea to store the increasing high burnup and damaged fuels. More than 20% of fuels generated by PWRs comprise high burnup fuels. This study conducted a structural safety evaluation of the preliminary designs for a high burnup storage cask with 21 spent nuclear fuels and evaluated feasible loading conditions under normal, off-normal, and accident conditions. Two types of metal and concrete storage casks were used in the evaluation. Structural integrity was assessed by comparing load combinations and stress intensity limits under each condition. Evaluation results showed that the storage cask had secured structural integrity as it satisfied the stress intensity limit under normal, off-normal, and accident conditions. These results can be used as baseline data for the detailed design of high burnup storage casks.
        4,000원
        34.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pseudolithoderma subextensum is a crustose brown algal species in the family Lithodermataceae and order Sphacelariales. This species is distributed in several regions across the world including, Europe, Western Atlantic, Middle East and Asia (Hong Kong and Japan). Recent floristic surveys along the Korean coastal shores have revealed new records of encrusting brown algae. In this study, we report P. subextensum as a new record from Korea. Morpho-anatomical and molecular studies on Ralfsia-like specimens from Korea identified some of them as P. subextensum. Pseudolithoderma subextensum is characterized by dark chestnut brown crust with a hypothallial basal layer and erect perithallial filaments, tufts of hairs occasionally arising from the basal layer, several discoid shaped chloroplasts per cell, plurangia arising terminally on erect filaments and without sterile cells, and unangia arising terminally on erect filaments, elongated cylindrical and without paraphyses. Phylogenetic analyses based on COI-5P (545bp) reveal that P. subextensum are nested within Lithodermataceae and forms the same clade with P. roscoffense. The genetic divergences for COI-5P between them is 24.5%.
        4,000원
        35.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As part of the research program “Freshwater Prokaryotic Organisms Research and Discovery,” freshwater samples were collected from the Nakdonggang River. After plating the samples on several culture media and incubating aerobically, approximately 900 bacterial strains were isolated and identified using 16S rRNA gene sequences. Among the bacterial isolates showing higher than 98.7% 16S rRNA gene sequence similarity with those of already confirmed bacterial species previously unreported in Korea, 29 strains were selected. These strains were phylogenetically diverse and belonged to 3 phyla, 6 classes, 13 orders, and 21 genera. At the genus level, these previously unreported species were found to be affiliated with Novosphingobium, Sphingomonas, Polymorphobacter, Croceibacterium, Devosia, Endobacterium, Agaricicola, Bradyrhizobium, Paracoccus, and Pseudotabrizicola of the class Alphaproteobacteria; Undibacterium, Azonexus, and Dechloromonas of the class Betaproteobacteria; Acinetobacter and Budvicia of the class Gammaproteobacteria; Streptomyces, Nocardioides, Mycobacterium, and Cellulomonas of the phylum Actinomycetota; Flavobacterium and Pedobacter of the phylum Bacteroidota. These species were further characterized by examining their Gram reaction, colony and cell morphologies, biochemical properties, and phylogenetic positions. Detailed descriptions of these 29 previously unreported species are provided.
        4,800원
        36.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study introduces and experimentally validates a novel approach that combines Instruction fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning to optimize the performance of Large Language Models (LLMs). These models have become revolutionary tools in natural language processing, showing remarkable performance across diverse application areas. However, optimizing their performance for specific domains necessitates fine-tuning of the base models (FMs), which is often limited by challenges such as data complexity and resource costs. The proposed approach aims to overcome these limitations by enhancing the performance of LLMs, particularly in the analysis precision and efficiency of national Research and Development (R&D) data. The study provides theoretical foundations and technical implementations of Instruction fine-tuning and LoRA fine-tuning. Through rigorous experimental validation, it is demonstrated that the proposed method significantly improves the precision and efficiency of data analysis, outperforming traditional fine-tuning methods. This enhancement is not only beneficial for national R&D data but also suggests potential applicability in various other data-centric domains, such as medical data analysis, financial forecasting, and educational assessments. The findings highlight the method's broad utility and significant contribution to advancing data analysis techniques in specialized knowledge domains, offering new possibilities for leveraging LLMs in complex and resource- intensive tasks. This research underscores the transformative potential of combining Instruction fine-tuning with LoRA fine-tuning to achieve superior performance in diverse applications, paving the way for more efficient and effective utilization of LLMs in both academic and industrial settings.
        4,500원
        37.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적: 본 연구는 실명을 유발하는 3대 주요 안질환의 연도별 유병률 추이를 관찰하고, 이들 질환의 인지율과 치 료율 비교와 관련 요인을 분석하고자 하였다. 방법: 질병관리청 국민건강영양조사 제8기(2019~2021년도) 조사에 참여한 대상자 중 만 40세 이상인 성인들을 대상으로 녹내장, 황반변성, 당뇨병성 망막병증의 유병률, 인지율과 치료율을 연도별로 비교하고 일반적 특성을 분 석하였다. 결과: 3대 주요 안질환의 연도별 추이를 보면 녹내장의 유병률은 매년 일정한 추이를 보이지만 당뇨망막병증의 유병률은 당뇨병 유병율과 함께 해마다 증가하고 있다. 연도별 인지율과 치료율은 다른 질환에 비해 녹내장이 높은 편이었으며, 황반변성의 인지율이 상당히 낮게 나타났다. 녹내장과 황반변성은 나이가 주요한 변수였으며, 황반변 성은 교육수준이 높아질수록 인지율과 치료율이 유의하게 높아지는 것으로 나타났다. 한편 당뇨병성 망막증의 경 우, 알코올 섭취는 인지율과 치료율을 감소시키는 것으로 나타났다. 결론: 본 연구를 통해 3대 주요 안질환의 인지율과 치료율에 대한 차이를 비교할 수 있었으며, 치료율에 미치는 다양한 요인 또한 확인할 수 있었다.
        4,000원
        38.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To non-destructively determine the burnup of a spent nuclear fuel assembly, it is essential to analyze the nuclear isotopes present in the assembly and detect the neutrons and gamma rays emitted from these isotopes. Specifically, gamma-ray measurement methods can utilize a single radiation measurement value of 137Cs or measure based on the energy peak ratio of Cs isotopes such as 134Cs/137Cs and 154Eu/137Cs. In this study, we validated the extent to which the results of gamma-ray measurements using cadmium zinc telluride (CZT) sensors based on 137Cs could be accurately simulated by implementing identical conditions on MCNP. To simulate measurement scenarios using a lead collimator, we propose equations that represent radiation behavior that reaches the detector by assuming “Direct hit” and “Penetration with attenuation” situations. The results obtained from MCNP confirmed an increase in measurement efficiency by 0.47 times when using the CZT detector, demonstrating the efficacy of the measurement system.
        4,000원
        39.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for tiamulin (TML) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with TML at the concentration of 25 g/L (TML-1, n=24) and 50 g/L (TML-2, n=24) for 5 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 1, 2, 3 and 5 days, respectively. According to the previously established analysis method, residual TML concentrations in poultry tissues were determined using LC-MS/MS. In TML-1, TML in all tissues was detected less than LOQ at 2 days after drug treatment. In TML-2, TML in liver and kidney was detected more than LOQ at 2 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of TML-1 and TML-2 in poultry tissues were established to 0 and 2 days, respectively. In conclusion, the estimated WT of TML in poultry tissues is shorter than the current WT recommendation of 5 days for TML in broiler chickens.
        4,000원
        40.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Severe Fever with Thrombocytopenia Syndrome (SFTS) is a newly emerging tick-borne disease caused by the SFTS virus (SFTSV), which belongs to the phlebovirus in the Bunyaviridae family. SFTSV is enveloped with a tripartite ambisense RNA genome. The L segment encodes the viral RNA-dependent RNA polymerase, the M segment encodes the two glycoproteins, Gc and Gn, and the S segment encodes the nucleoprotein (NP) and the nonstructural protein (NSs). NP participates in ribonucleoprotein (RNP) packaging and commonly detected early after infection, suggesting that the N protein is possible to be used as a target antigen for early diagnosis of SFTSV infection. In this study, we analyzed a highly immunogenic multi-epitope using GnGc and NP genes from a consensus sequence of SFTSV strain isolated from infected patients in Korea. The selected genes are constructed to the expression vector plasmid pJHL65 and the recombinant plasmid vector was transformed into the Δasd Δlon ΔcpxR Salmonella Typhimurium attenuated strain JOL912 and the expression of these antigens was verified by immunoblotting assay. We observed the significant levels of systemic IgG and mucosal IgM responses against the JOL912-derived antigen in the immunized BALB/c mice. The level of CD3+CD4+, CD3+CD8+ T lymphocyte subpopulation and TNF-α were also highly regulated in splenic T cells re-stimulated in vitro with NP and Gn/Gc multi-epitope selected antigens. Therefore, immunized mice with NP and Gn/GC multi-epitope recombinant proteins of attenuated Salmonella delivery system elicited T cell-related immune response, inducing an effective immune response. In conclusion, the attenuated Salmonella expressing NP-GnGc multi-epitopes could be a novel vaccine candidate against the SFTS virus.
        4,000원
        1 2 3 4 5