검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 39

        1.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.
        4,000원
        2.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
        4,000원
        5.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simulation method to estimate microstructure dependent material properties and their influence on performance for a honeycomb structured SiC heating element has been established. Electrical and thermal conductivities of a porous SiC sample were calculated by solving a current continuity equation. Then, the results were used as input parameters for a finite element analysis package to predict temperature distribution when the heating element was subjected to a DC bias. Based on the simulation results, a direction of material development for better heating efficiency was found. In addition, a modified metal electrode scheme to decelerate corrosion kinetics was proposed, by which the durability of the water heating system was greatly improved.
        4,000원
        6.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, nitrogen ions were implanted into STS 316L austenitic stainless steel by plasma immersion ion implantation (PIII) to improve the corrosion resistance. The implantation of nitrogen ions was performed with bias voltages of −5, −10, −15, and −20 kV. The implantation time was 240 min and the implantation temperature was kept at room temperature. With nitrogen implantation, the corrosion resistance of 316 L improved in comparison with that of the bare steel. The effects of nitrogen ion implantation on the electrochemical corrosion behavior of the specimen were investigated by the potentiodynamic polarization test, which was conducted in a 0.5 M H2SO4 solution at 70 oC. The phase evolution and texture caused by the nitrogen ion implantation were analyzed by an X-ray diffractometer. It was demonstrated that the samples implanted at lower bias voltages, i.e., 5 kV and 10 kV, showed an expanded austenite phase, γN, and strong (111) texture morphology. Those samples exhibited a better corrosion resistance.
        4,000원
        7.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator.
        4,200원
        8.
        2015.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of 1650 oC for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.
        4,000원
        9.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% Y2O3 doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature (1400˚C), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.
        4,000원
        10.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-finefecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid(0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing andsintering processes were conduced. In order to examine the effect of cell size (200 µm, 450 µm, 500 µm) in process,pre-samples were sintered for two hours at temperature of 1450˚C, in H₂ atmospheres. A 24-hour thermo gravimetricanalysis test was conducted at 1000˚C in a 79% N₂ + 21% O₂ to investigate the high temperature oxidation behavior ofpowder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased withincreasing cell size. In the 200 µm porous metal with a thinner strut and larger specific surface area, the depletion ofthe stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared withthe 450, 500 µm porous metals.
        4,000원
        11.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrochemical performance for the corrosion of zinc anodes according to particle size and shape as anode in Zn/air batteries was study. We prepared five samples of Zn powder with different particle size and morphol- ogy. For analysis the particle size of theme, we measured particle size analysis (PSA). As the result, sample (e) had smaller particle size with 10.334 µm than others. For measuring the electrochemical performance of them, we measured the cyclic voltammetry and linear polarization in three electrode system (half-cell). For measuring the morphology change of them before and after cyclic voltammetry, we measured Field Emission Scanning Electron Microscope (FE- SEM). From the cyclic voltammetry, as the zinc powder had small size, we knew that it had large diffusion coefficient. From the linear polarization, as the zinc powder had small size, it was a good state with high polarization resistance as anode in Zn/air batteries. From the SEM images, the particle size had increased due to the dendrite formation after cyclic voltammetry. Therefore, the sample (e) with small size would have the best electrochemical performance between these samples.
        4,000원
        12.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of , , , and , respectively, in atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at in a 79% +21% to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.
        4,000원
        13.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In2O3 films were deposited by RF magnetron sputtering on a glass substrate and then the effect of post depositionannealing in nitrogen atmosphere on the structural, optical and electrical properties of the films was investigated. Afterdeposition, the annealing process was conducted for 30 minutes at 200 and 400oC. XRD pattern analysis showed that the asdeposited films were amorphous. When the annealing temperature reached 200-400oC, the intensities of the In2O3 (222) majorpeak increased and the full width at half maximum (FWHM) of the In2O3 (222) peak decreased due to the crystallization. Thefilms annealed at 400oC showed a grain size of 28nm, which was larger than that of the as deposited amorphous films. Theoptical transmittance in the visible wavelength region also increased, while the electrical sheet resistance decreased. In this study,the films annealed at 400oC showed the highest optical transmittance of 76% and also showed the lowest sheet resistance of89Ω/□. The figure of merit reached a maximum of 7.2×10−4Ω−1 for the films annealed at 400oC. The effect of the annealingon the work-function of In2O3 films was considered. The work-function obtained from annealed films at 400oC was 7.0eV. Thus,the annealed In2O3 films are an alternative to ITO films for use as transparent anodes in OLEDs.
        4,000원
        14.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지진하중으로 인해 교량상부구조 간에 발생하는 충돌은 교량상부구조의 낙교, 교각의 파괴와 같은 국부적인 손상뿐만 아니라 교량전체시스템의 붕괴를 유발할 수 있다. 이와 같은 충돌의 영향은 신축이음부의 재질, 형태 및 교대부의 여유간격과 관계가 있는 것으로 알려져 있다. 본 논문에서는 교량상부구조 간에 발생하는 충돌에 대한 특성을 분석하기 위해 충돌해석 이론 중 가장 널리 활용되고 있는 접합요소 접근법(Linear Spring Model, Kelvin-Voigt Model, Hertz Model)에 대해서 고찰 하고 이를 실험적으로 검증하기 위해 탄성받침이 설치된 교량상부구조를 모형화한 콘크리트 교량모델에 대한 진동대 실험을 실시하였다. 기존의 충돌모델을 적용한 이론 해는 실험결과와 잘 부합되지 못하였으며, 이에 본 논문에서는 충돌강성에 적절한 적용계수 ?? 를 이용하여 충돌 후 거동을 잘 모사할 수 있는 충돌강성 수준을 산출하였다. 충돌발생시 적절한 강성 및 재료의 동적특성, 충돌면의 형상 등에 따라 발생하는 충돌력의 크기가 달라지므로 이에 대한 추가적인 연구가 필요한 것으로 판단된다.
        4,000원
        15.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of , and . The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as , , , and . In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.
        4,000원
        16.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.
        4,000원
        17.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.
        4,000원
        18.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO thin films were prepared on a glass substrate by radio frequency (RF) magnetron sputtering without intentional substrate heating and then surfaces of the ZnO films were irradiated with intense electrons in vacuum condition to investigate the effect of electron bombardment on crystallization, surface roughness, morphology and hydrogen gas sensitivity. In XRD pattern, as deposited ZnO films show a higher ZnO (002) peak intensity. However, the peak intensity for ZnO (002) is decreased with increase of electron bombarding energy. Atomic force microscope images show that surface morphology is also dependent on electron bombarding energy. The surface roughness increases due to intense electron bombardment as high as 2.7 nm. The observed optical transmittance means that the films irradiated with intense electron beams at 900 eV show lower transmittance than the others due to their rough surfaces. In addition, ZnO films irradiated by the electron beam at 900 eV show higher hydrogen gas sensitivity than the films that were electron beam irradiated at 450 eV. From XRD pattern and atomic force microscope observations, it is supposed that intense electron bombardment promotes a rough surface due to the intense bombardments and increased gas sensitivity of ZnO films for hydrogen gas. These results suggest that ZnO films irradiated with intense electron beams are promising for practical high performance hydrogen gas sensors.
        3,000원
        20.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 거제시 신현읍의 산림을 연결하는 녹지축의 식재현황을 파악하고 생태적 구조개선방안을 수립하고자 실시하였다. 연구대상지는 소음완화를 목적으로 하는 완충녹지로 육교산(50m)과 중매산(131m)을 잇는 중간지점에 위치하고 있다. 비오톱 유형은 시가화지역, 도로 등 도시화지역 2개, 산림비오톱, 하천비오톱, 조경수목식재지 비오톱 등 녹지 및 오픈스페이스 지역 15개로 총 17개로 분류되었다. 비오톱 유형분석자료를 바탕으로 자연생태계가 양호하여 생물서식이 가능한 육교산과 중매산을 거점녹지로, 기조성된 완충녹지를 연결녹지로 활용하는 것이 생물을 도심내로 유입하는 유일한 방법으로 판단되었다. 거점녹지, 준거점녹지, 연결녹지의 녹피율은 각각 160.29%, 128.37%, 44.37%. 녹지용적계수는 4.04m3/m2, 3.95m3/m2, 0.65m3/m2로 거점녹지는 층위구조가 형성되어 생물서식처 및 종공급처 역할을 수행하고 있으나 준거점녹지는 하층식생이 훼손되었고, 연결녹지는 관목층의 식재량 부족 및 훼손으로 불량하였다. 결국, 도심내로의 야생조류유입 및 생물서식을 위한 통로 역할과 시민들의 이용공간으로 활용하기 위해서는 거점녹지의 연결을 통한 생물종다양성 증진 및 시민의 이용을 위한 자연관찰로를 조성하고자 도심내 야생조류 유입을 위한 생태적 조성 가로녹지 조성을 통한 녹지 연결, 도시민의 이용 및 휴양을 위한 경관개선에 대한 세부실천계획을 제안하고자 하였다.
        4,600원
        1 2