In this study, hybrid devices were developed to simultaneously remove odor and particulate matter (PM) emitted during meat grilling, and their performance was evaluated. A ceramic filter system and surfactant microbubble plasma system were used to reduce particulate matter. For odor reduction, an electro-oxidation system, an ozone-active catalytic oxidation system, and a multi-adsorption filter system were used. By combining the above particulate matter reduction and odor reduction devices, the reduction efficiency of odor and particulate matter generated during meat grilling was analyzed. As a result, most of the six combined device conditions showed a reduction efficiency of more than 90% for particulate matter. The combined odor also showed a high reduction efficiency of less than 200 times the emission concentration standard. This study also evaluated 22 types of odorous substances, of which ammonia (NH3) and hydrogen sulfide (H2S) showed removal efficiencies of more than 99%. Therefore, it is expected that the combination of these technologies can be used and applied directly to the sites where meat grilling restaurants are located to effectively contribute to the simultaneous reduction of particulate matter and odor.
Biodiesel is a traditional energy field that can replace low-quality marine fuels for ships and various studies have been conducted. Since the 2000s, Korea has introduced a mandatory supply system of biodiesel for domestic vehicle diesel, gradually raising the blending ratio from 0.5% to 3.5%, and is expected to raise the mandatory blending ratio to about 8.0% by 2030. Therefore, in this study attempted to blend high-quality samples that meet the biodiesel quality standards manufactured by domestic companies with MGO in ratios ranging from 0 to 60%. We utilized a 1-ton combustion chamber to compare and analyze the exhaust gas emissions characteristics. As a result, in the BD60 condition, which represents the maximum range in this study, the O2 increased by approximately 1.5%p, and CO2 tended to decrease by 1.1%p. NOx decreased by approximately 18.2%p from 34.1 ppm to 27.9 ppm. In the case of SOx, a very low concentration of 0.08 ppm was detected under the BD0 condition, and it was undetectable under all other conditions containing biodiesel. This suggests that MGO itself has excellent low-sulfur oil quality and can implement zero SOx through biodiesel mixing. Furthermore the combustion efficiency decreased by approximately 1.91%, from 72% to 70.2%, and the exhaust gas temperature also decreased by about 4.5%p. However despite the lower calorific value of biodiesel compared to MGO, it demonstrated relatively close thermal output per unit content. This indicates sufficient potential for biodiesel to serve as a viable alternative fuel for ships in the future.
The purpose of this study intends to development of a lap scale 1-ton standard combustion chamber. The manufactured standard combustion chamber analyzes pilot combustion tests and emission standard data of MGO fuel oil. The actual capacity of the standard combustion chamber is about 900L, total weight of 265kg. As a result of the pilot combustion test, the O2 was about 8.01% and the CO2 was about 9.34%. In the case of NOx, it was about 33.50 ppm, and SOx (SO2) was about 0.76ppm. The combustion efficiency was about 72.41%, the exhaust gas temperature was 366.7℃, and the combustion chamber internal temperature was about 448.0℃.
This study intends to use the possibility of an eco-friendly alternative fuel to be applied to ships as a sample manufacturing method for ship MGO and bioethanol mixed fuel oil as basic evidence. The components of the manufactured mixed fuel oil were analyzed using the ISO-8217 standard testing method. As a result of analysis showed that in the lower calorific value decreased to 43030J/g at BE0 fuel and 37010J/g at BE30 fuel. The high calorific value decreased to 46.065MJ/kg at BE0 fuel and 39.460MJ/kg at BE30 fuel. The density decreased to 840.8kg/m3 at BE0 fuel and 837.0kg/m3 at BE30 fuel. In the case of flash point it was 67.5℃ when BE0, and decreased to less than 40.0℃ when BE10 to BE30. Finally the Kinematic Viscosity was 3.011mm2/s at BE0 and decreased to 2.502mm2/s at BE30.
Since ships are exposed to noise and vibration for a long time in seas isolated from land, the stress of workers is high, requiring studies on the improvement of the problem. In addition, the health of crew members on fishing vessels, unlike commercial ships, carrying out fishing activities is closely related to fishing performance. However, considering that most of IMO's guidelines apply to merchant ships, provisions should be made for vibration in accommodation areas of fishing vessels. Accordingly, this study, applying the revised ISO 20283-5:2016 standard and through experiment, investigated the vibration characteristics of the accommodation area for each operating conditions of a 1000-ton trawler fishing vessel. Within the scope of the study and the full-ahead mode, the vibration was highest in the engine control room (4.17mm/s) while the acceptable standard was satisfied sufficiently in all conditions. Application of the merchant vessel vibration standard to fishing vessel is expected to improve the working environment of fishing vessel crew members.
We conducted research on the removal performance of various odor substances using a deodorizing agent, hypochlorite ion (OCl-), in odor emission sites where various odor-causing substances occur simultaneously. In experiments treating odor gases containing mixtures of aldehydes (acetaldehyde, n-butyl aldehyde, iso-valeraldehyde, propionaldehyde), sulfur compounds (hydrogen sulfide, methyl mercaptan, and dimethyl sulfide), and nitrogen compounds (ammonia and trimethyl amine), it was demonstrated that the introduced odor substances could be simultaneously removed when electrolyzed water was used. The overall removal efficiency was found to be significantly higher than when water alone was used. Particularly, it showed simultaneous effectiveness against acidic, neutral, and alkaline odor substances such as ammonia and hydrogen sulfide. Considering the positive aspects with regard to chemical safety, the use of salt instead of chemicals, and the continuous regeneration of the oxidizing agent, this environmentally friendly deodorization technology is expected to contribute to securing excellent odor removal capabilities and wide-ranging deodorization applications.
Recently, the International Maritime Organization is strengthening regulations for ships operating in polar regions. Hence, insulated multi-core tubes as components for vessels operating in extreme cold need to be investigated in various aspects. Furthermore, the demand for research on electric propulsion vessels is also increasingly growing. Thus, to utilize a 4-core insulated multi-core tube with glass wool as insulation, which was previously developed for ships operating in polar regions, as a water-cooled electrical cable, this study conducted an experiment on the temperature change when water at normal temperature 25℃ was supplied as a coolant under the overcurrent varied from 10A to 25A. As a result, the temperature increase of the core in 10A condition was 3.3℃, but it increased to 13.05℃ in the 25A condition. This showed that a temperature difference of approximately 9.75℃ occurred according to the overcurrent load. However, the coolant inlet and outlet temperatures were relatively uniform around 1℃ in all conditions. This suggests that increasing the residence time by proper control of the coolant flow in the future could achieve a higher cooling effect.
In this study, in order to confirm the machining characteristics of AISI 1020 CD-Bar, cutting was performed after strength measurement, and surface roughness analysis was performed according to cutting conditions. Tensile strength was reduced by about 27.7% compared to AISI 1045 material, and Rockwell hardness HRC was reduced by 46.7%. The surface roughness measurement after cutting was divided into roughing, semi-finishing and finishing turning. In particular, in finishing machining, the best surface roughness was confirmed when the cutting speed was 150m/min and the depth of cut was 0.6mm based on the feed rate of 0.05mm/rev.
The fuel oil used for ships has the viscosity higher than the fuel used for general vehicles and contain impurities, so it’s exhaust gas results in the environment pollution. There have been studies actively conducted to examine alternative fuels for improving the quality of the marine fuel oil. It is, however, necessary to test the quality of fuel for mega ships, by conducting the simulation test using reduced-size models, before the demonstration step, because it takes too much cost and time to directly perform the demonstration of alternative fuels. This study, therefore, developed a 30-liter small-size boiler similar to the ship system and performed an initial fuel test by applying MGO to it. The findings show that the amount of nitrogen oxide to which 4% of the standard oxide level was applied was about 24.69ppm, when the oxide level was 10.02%, with the CO2 of 8.02%, the exhaust gas temperature of 291.15℃ and the combustion efficiency of about 74.53%, indicating that it will be necessary to conduct various studies through the ratio control in the future.
Environmental noise occurring on ships has various negative impacts on sailors’ health conditions such as hearing loss, sleep disturbance, psychological stress, etc., so regulations on them are required, but the ship noise regulations are usually applied to only large merchant ships. Although regulations on fishing boats with strong fishing and work intensity are determined to be necessary, there has been little relevant research. This study, therefore, attempted to measure the environmental noise of coastal composite fishing vessels less than two tones and provide the results of basic research on the noise regulations for fishing vessels. It measured them by setting the measurement zones as after side, midship and fore side, and based on the criterion of IMO MSC 337(91). The findings showed that the noise of them often exceeded 75dB(A), the criterion of the open deck noise in the zones in which the load of main engines was increased. In particular, the noise of the stern was as high as 92.2dB(A) during the full ahead. Hence, hearing loss may be caused by such a noise, so a variety of regulations on it are determined to be necessary.
Korea is a country where the population is concentrated in metropolitan areas that have undergone rapid industrial development. As of 2020, more than 43% of the total population lives in large cities, and about 18.5% of the total population lives in Seoul. A basic human need living in such a metropolis is a pleasant environment. In this study, complex odors and designated odors were evaluated at the boundary areas and at the outlets for 15 public environmental facilities selected from among odor sources in Seoul. As a result of measuring the complex odor intensity was 3 ~ 6 times at the boundary areas and 100 ~ 4,481 times at the outlets. In food waste treatment facilities, incineration facilities, and waste transfer station facilities, the compound making the largest contribution to odor is acetaldehyde, which was recorded at 46%, 25%, and 32% respectively. At a sewage treatment facility and agro-fisheries wholesale market, hydrogen sulfide was the largest contributing compound at 71% and 29% respectively.
Complaints about foul odors are emerging as an issue, and the number of complaints is steadily increasing every year. Biofiltration is known to remove harmful or odorous substances from the atmosphere by using microorganisms, and full-scale biofilters are being installed and operated in various environmental and industrial facilities. In this study, the current status and actual odor removal efficiency of full-scale biofilters installed in publicly owned treatment facilities such as sewage, manure, and livestock manure treatment plants were investigated. In addition, the effects of design and operating factors on their efficiency were also examined. As a result, it was found that odor prevention facilities with less than 30% odor removal efficiency based on complex odors accounted for 40%-50% of the biofilters investigated. In investigating the appropriate level of operating factors on odor removal efficiency, it was found that compliance with the recommended values p lays a significant role in improving odor removal efficiency. In the canonical correlation analysis for the on-site biofilter operation and design data, residence time and humidity were found to be the most critical factors. The on-site biofilter operation and design data were analyzed through canonical correlation analysis, and the residence time and humidity maintenance were found to be the most important factors in the design and operations of the biofilter. Based on these results, it is necessary to improve the odor removal efficiency of on-site biofilters by reviewing the effectiveness of the operation factors, improving devices, and adjusting operating methods.
The types and distribution ratio of odor removal systems installed in publicly owned environmental facilities such as sewage treatment, wastewater treatment, manure treatment, livestock manure treatment, and food waste treatment were investigated. Since the intensity of the odor and the composition of the odor substances are different depending on the type of each public treatment facility, different odor removal efficiencies were derived depending on the applied odor removal technology. In addition, the removal efficiency of complex odors and individual odor substances of odor removal systems such as those applying biofilters, scrubbers, and adsorption towers were also compared and evaluated. Although it depends on each odor removal technology and application facility, about 50% of various odor removal systems presented an odor removal performance of less than 30%. The odor removal systems with an odor removal efficiency of 70% or more were evaluated to be less than 30% of the total number. Therefore, we suggest that odor removal efficiencies should be improved through continuous monitoring, diagnosis, reinforcement of maintenance, and improvement of systems.
Quality standards of activated carbon for gas-phase applications have been deleted from the Korean national standard list since 2007, and the iodine adsorption test is the only measure currently used for quality assurance. This study was performed to propose a suitable test method and a quality standard for gas-phase activated carbon. The "1/2 saturated vapor adsorption" test has been developed as a simple and convenient method to determine the adsorption capacity of activated carbon. In this study, the developed test method was evaluated using model VOCs including toluene, methyl ethyl ketone (MEK), and ethyl acetate (EA). A virgin activated carbon revealed adsorption capacities of 344mg/g, 322mg/g, and 328mg/g for toluene, EA, and MEK, respectively, and the adsorption capacity for a mixture of the three VOCs was 334 mg/g. When a regenerated activated carbon was applied, the adsorption capacities dramatically decreased to 62 mg/g, 52 mg/g, and 61 mg/ g for toluene, EA, and MEK, respectively. In addition, the 1/2 solvent vapor adsorption tests using 13 different specimens of activated carbon showed that their capacities were closely related to the iodine adsorption numbers, and this study suggested the adsorption capacity of 300 mg/g as a new quality standard. The novel test method and its standard may help to guarantee the quality of gas-phase activated carbon used for VOCs abatement processes.
Most of the white fumes from the tenter process of a textile plant in an industrial complex are generated by water vapor and oil mist. While general water vapor disappears when the humidity is lowered, the white fume generated in the tenter process does not disappear and is continuously maintained, resulting in environmental problems and complaints. Efforts to reduce white fume are being conducted, but it is vitally important to develop a performance index that quantitatively calculates and deduces the degree by which white fume has been reduced, so that a tangible and visible result can be obtained in the performance evaluation of prevention facilities. In this study, the removal efficiency or performance of a general wet scrubber and a wet electrostatic precipitator (electrical fume collector, EFC) installed in the actual textile tenter process was analyzed by the light scattering method that can measure the concentration of particles up to a high level. The white fume removal efficiency of the EFC was 92%, much higher than the 17% removal efficiency of the general scrubber. In addition, the EFC was more effective in removing toluene, 1,1'- [oxybis(methylene)]bis- Benzene, and benzothiazole, which are the major substances generated from the textile tenter process, as well as complex odors. From these results, it was found that the light scattering method is one of the useful tools to evaluate the performance of white fume prevention facilities in the industrial field in terms of satisfying the urgent need for measurement and the ability to obtain a clear and precise result on site. This approach is meaningful in that real-time quantification is applicable more intuitively than the gravimetric method in assessing the fume removal performance as it can be observed with the naked eye.
The ship security accidents that occur in ships, at sea, and in ports have become increasingly more serious in recent years, and in particular, maritime terrorism and the abduction by pirates are emerging as an international problem. Accordingly, the International Maritime Organization implemented a measures to enhance ship security by adopting SOLAS Chapter 11-2, ISPS-code in 2004. In this study, it was investigated whether JDS-S4, a directional sound receiver developed for responding to ship security accident, has durability and safety suitable for ships. For the purpose, the conducted emission test (CE102) of the US military standard test (MIL-STD-461F) was performed, and it was confirmed that JDS-S4 satisfies the test conditions sufficiently.
Recently, air pollution from fossil fuels is at a serious level, and the IMO proposes to reduce greenhouse gas emissions by about 70% by 2050, and controls greenhouse gas emissions by applying the energy efficiency disign index(EEDI) to each ship type. In this study, the marine fuel oil viscosity of MGO, MDO, HFO and CGO according to the temperature change was compared and measured and the difference was analyzed. As a result, the viscosity of CGO was 3.32mPa·s, which was almost similar to MGO(3.40mPa·s) and MDO(3.51mPa·s) so it was judged that it could be used as a marine fuel, and it was found that there was a significant difference with HFO at P<0.01 there was.
Due to severe environmental pollution from ships, IMO(International Maritime Organization) is imposing strict controls on pollutant emission in ECA(Emission Control Area). There have been active studies to find fuel that could replace existing fossil fuel and especially in recent times, diverse studies on recycling of coffee ground are in progress. The annual domestic consumption of coffee was 150,000 tons according to the data of 2017 year and 99% of them are coffee ground to be scrapped. Therefore, in this study, coffee ground was mixed with diesel oil to develop alternative fuel. The analysis result showed that when coffee ground and diesel oil were mixed at a rate of 30%, 20% and 10%, the diameter of coffee ground droplet was 49.1μm, 45.9μm and 17.5μm respectively.
The security accidents occurring in ships and at seas and ports became very serious, and in particular, the maritime terrorism and abduction by pirates have emerged at the international level as a problem. The international maritime organization (IMO), accordingly, entered into such forces as the SOLAS chapter and measures in order to reinforce the maritime security and the security for ships and port facilities in 2004. In this study, the JDS-S4 improved as an oriented speaker to reinforce the ship security by enabling the clear communication even at long distance was tested by using the conducted emission test(CE101) and a standard test of the US military standard (MIL-STD-461F). Also, the result of this study was shown to satisfy the standard.
The deck area of a ship uses a variety of mechanisms and especially, for handling heavy materials, such as a Windlass, a Davit and a Derrick, a Winch for a deck, which controls by winding a drum with a wire or a rope is mostly used. Since the winch mainly uses a hydraulic system depending on driving characteristics, load-based power consumption is the most important device for this method. Therefore, an experimental study on the effect of energy reduction resulting from the flow rate variation was conducted by applying an inverter control to the deck winch, which is being used in a real training ship. As a result, when the surrounding environment and the driving condition were equal to each other, the maximum reduction and the minimum reduction in power consumption resulting from the flow rate variation excepting the maximum flow rate conditions was 51.8% and 16.1% respectively.