검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 89

        61.
        1991.09 KCI 등재 서비스 종료(열람 제한)
        This paper aims to determining the optimal capacity of Pusan port in view point of Container Physical Distribution cost. It has been established a coast model of the container physical distribution system in Pusan port is composed of 4 sub-systems and in-land transport system. Cargo handling system, transfer & storage system and in-land transport system, and analyzed the cost model of the system. From this analysis, we found that the system had 7 routes including in-land transport by rail or road and coastal transport by feeder ship between Pusan port and cargo owner's door. Though railway transport cost was relatively cheap, but, it was limited to choose railway transport routes due to the introducing of transport cargo allocation practice caused by shortage of railway transport capacity. The physical distribution ost for total import & export container through Pusan port was composed of 4.47% in port entring cost, 12.98% in cargo handling cost, 7.44% in transfer & storage cost and 75.11% in in-land transport cost. Investigation in case of BCTOC verified the results as follows. 1) The optimal level of one time cargo handling was verified 236VAN (377TEU) and annual optimal handling capacity was calculated in 516, 840VAN(826, 944TEU) where berth occupancy is σ=0.6 when regardless of port congestion cost, 2) The optimal level of one time cargo handling was verified 252VAN (403TEU) and annual optimal handling capacity was calculated in 502, 110VAN (803, 376TEU) where berth occupancy is σ=0.58 when considering of port congestion cost.
        62.
        1991.09 KCI 등재 서비스 종료(열람 제한)
        As increasing needs of marine transportation , world merchant fleet and ship's size were enlarged and it caused frequent disasters in human lives and natural environment. By the reason of the above, they started to establish the Vessel Traffic System (VTS) at the European coast in 1960' and most of advanced contries established and managed it to prevent the sea traffic accidents in these days. The concept of traffic control at sea can be divided into three types. First, the initial gathering of informations about ship's identity and movement etc.. Second, monitoring of the traffic flow and amendment of instructions. Third , organization and direction of ships by allocating routes and speeds. Where the goal of traffic control is safety of traffics and developing effectiveness of navigation channel, if traffic volume is less tan channel capacity then the above first or second level of control would be sufficient but if it is bigger than that , more positive policy of control should be adopted as same as third type of the above. In this paper where the strategy of VTS is focused on the control of traffic density to be spread equality, as possible , all over the navigation channels and also improvement of effectiveness , it suggests algorithm to assign the vessels to the channels with balanced traffic density , and other algorithms using D.P. to sequence the vessels assigned to one channel in optimum order which decreases the mean waiting time in sense of channel effectiveness with numerical examples.
        63.
        1991.06 KCI 등재 서비스 종료(열람 제한)
        As per the rapid development of world economics the marine traffic volume was increased accordingly and caused frequent disasters in human lives and natural environment in the consequence of accidents. As the result of the above they started to establish Vessel Traffic System(VTS) and separation scheme in waterway from 1960' to prevent the marin traffic accident but the problem of safety at sea appears now as neither fully defined nor sufficiently analysed. At the present, the dominant factor in establishing the strategy of marine traffic has been safety of navigation concerning only with the ship, but the risk of society derives almost wholly from the nature of cargo. To measure the degree of danger for each ship there is suggested concept of safety factor numbers denoting the level of latent danger in connection with ship and her cargo. In this paper, where the strategy of VTS is put on controlling density of safety factor for control area. it suggested algorithms how to assign the vessels and also to get optimal sequence of vessels located to a sector in the sense of minimizing the passage delay. For the formulation of problem, min max and 0-1 programming methods are applied and developed heuristic algorithm is presented with numerical example to improve the efficiency of calculation.
        64.
        1990.12 KCI 등재 서비스 종료(열람 제한)
        Since L.A. Zadeh introduced the theory of fuzzy sets in 1965, E.H. Mamdani applied the theory to the steam engine control in 1974. Since then, scientists have shown a great deal of interests in its application to practical problems and the possibility of the application of the theory a more complicate system has been increasing greatly. In the fuzzy control, the qualitative knowledge and intuition that the operators of a system has acquired through their experience can be logically described by the Linguistic Control Rule(LCR). The algorithm of th control is made of the LCR, and th control of an object is performed by processing this algorithm implementing a computer. in this thesis, the fuzzy controller of the ship's steering system is devided into two systems, namely FC1 and FC2, according to their control function. FC1 is for the course keeping steering, wheress FC2 is for the altering of s ship's course. The characteristics of the control system were investigated through the digital computer simulation and the results were compared with those of the conventional steering system. It was found that the fuzzy control was more efficient than the conventional auto pilot system.
        65.
        1990.12 KCI 등재 서비스 종료(열람 제한)
        With increasing ship's speed turnround and port time becomes a large percentage of total roundtrip time and this causes to accelerate the introduction of the various kind of modern handling equipment, the standardization of cargoes, and the improvement of the ship. However, it is still a drag on efficient operation of ship. Similarly, the turnround time at the container port is very important as a measure for the decision of the efficiency of port. To decrease operating coasts, the minimization of the time need to cargo handling at the ports of call must be achieved. Thus the optimization of the time need to cargo handling at the ports of call must be achieved. Thus the optimized Container Loading Plan is necessary, especially under the rapid speed of container operations. For the container loading plan, in this thesis, we use the hungarian method and the branch and bound method to get the initial disposition of both maximization of ship's GM and minimization of shift number to the obstructive container in a yard area. We apply the dynamic programming algorithm to get the final disposition for minimizing total turnroudn time and finally we analyzed the results to check whether the initial disposition is proper or not.
        66.
        1989.12 KCI 등재 서비스 종료(열람 제한)
        Recently recognize the labor productivity of port physical distribution system in the port and shipping areas, Much Efforts for evaluating this productivity has been made continuously. BUt still there is little study, so far, on a systematic research for the management of port labor gangs, and even those were mainly depended on a rule of thumb. Especially the object of this study is to introduce the method of optimal allocation and assignment for the labor gangs per pier unit in the multiple ships berthed at an arbitary pier or port. In case the multiple ships have a homogeneous cargoes or do not have sufficient labor gangs to be assigned. The problem of optimal allocation and assignment of the labor gangs to be i) formalized with multi-state decision process in form of difference equation as the pattern which converted the independent multiple ships into a single ship with the intra-multiple ships, and ii) the optimal size of labor gangs could be obtained through the simple mathematical method instead of complicated dynamic programming, and iii) In case of shortage of labor gangs available the evaluation function considering the labor gangs available and total shift times was introduced, and iv) the optimal allocation and assignment of labor gangs was dealt at the point of minimizing the summation of the total shift times and at the point of minimizing the total cost charged for the extra waiting time except PHI time during port times for the multiple ships combinations.
        67.
        1989.06 KCI 등재 서비스 종료(열람 제한)
        Nowadays much efforts for evaluating the productivity of port physical distribution system to meet the rapid change of the port and shipping circumstances has been made continuously all over the world. The major part of these efforts is the improvement of the productivity of cargo handling system. The cargo equipment system as infrastructure in the cargo handling system is organized well in some degrees, but the management system of manpower as upper structure is still remained in an insufficient degree. There is little study, so far, on a systematic research for the management of port labor gang, and even those were mainly depended on rule of thumb. The object of this study is to introduce the method of optimal allocation and assignment for the labor gang in single ship, which was suggested as a first stage in dealing with them generally. The problem of optimal allocation and assignment of the labor gang can be (I) formalized with multi-stage allocation and assignment of the labor gang can be. (II) dealt with two stages in form of hierarchic structure and moreover, (III) The optimal size of labor gang was obtained through dynamic programming from the point of minimizing the summation of labor gang in every stage, (IV) For the problem of optimal assignment, the optimal policy was determined at the point of minimizing the summation of movement between hatches.
        68.
        1989.06 KCI 등재 서비스 종료(열람 제한)
        In the past twenty years, there has been a rapid increase in the volume of traffic in Korea due to the Korean great growth of the Korean economy. Since transformation provides an infrastructure vital to economic growth, it becomes more and more an integral part of the Korea economy. The importance of coastal shipping stands out in particular, not only because of the expansion limit on the road network, but also because of saturation in the capacity of rail transportation. In spite of this increase and its importance, coastal shipping is falling behind partly because it is givenless emphasis than ocean-going shipping and other inland transportation systems and partly because of overcompetition due to excessive ship tonnage. Therefore, estimating and planning optimum ship tonnage is the first take to develop Korean coastal shipping. This paper aims to estimate the optimum coastal ship tonnage by computer simulation and finally to draw up plans for the ship tonnage balance according to supply and demand. The estimation of the optimum ship tonnage is peformed by the method of Origin -Destimation and time series analysis. The result are as follows : (1) The optimum ship tonnage in 1987 was 358, 680 DWT, which is 54% of the current ship tonnage (481 ships, 662, 664DWT) that is equal to the optimum ship tonnage in 1998. this overcapacity result is in excessive competition and financial difficulties in Korea coastal shipping. (2) The excessive ship tonnage can be broken down into ship types as follows : oil carrier 250, 926 DWT(350%), cement carrier 9, 977 DWT(119%), iron material/machinery carrier 25, 665 DWT(117%), general cargo carrier 17, 416DWT(112%). (3) the current total ship crew of 5, 079 is more than the verified optimally efficient figure of 3, 808 by 1271. (4) From the viewpoint of management strategy, it is necessary that excessive ship tonnage be reduced and uneconomic outdated vessels be broken up. And its found that the diversion into economically efficient fleets is urgently required in order to meet increasing annual rate in the amounts of cargo(23, 877DWT). (5) The plans for the ship tonnage balance according to supply and demand are as follows 1) The establishment of a legislative system for the arrangement of ship tonnage. This would involve; (a) The announcement of an optimum tonnage which guides the licensing of cargo vessels and ship tonnage supply. (b) The establishment of an organization that substantially arrangement tonnage in Korea coastal shipping. 2) The announcement of an optimum ship tonnage both per year and short-term that guides current tonnage supply plans. 3) The settlement of elastic tariffs resulting in the protect6ion of coastal shipping's share from other tonnage supply plans. 4) The settlement of elastic tariffs resulting in the protection of coastal shipping's share from other transportation systems. 4) Restriction of ocean-going vessels from participating in coastal shipping routes. 5) Business rationalization of coastal shipping company which reduces uneconomic outdated vessels and boosts the national economy. If we are to achieve these ends, the followings are prerequisites; I) Because many non-licensed vessels are actually operating and threatening the safe voyage of the others in Korea coastal routes, it is necessary that those ind of vessels be controlled and punished by the authorities. II) The supply of ship tonnage in Korean coastal routes should be predently monitored because most of the coastal vessels are to small to be diverted into ocean-going routes in case of excessive supply. III) Every ship type which is engaged in coastal shipping should be specialized according to the characteristics of its routes as soon possible.
        69.
        1988.12 서비스 종료(열람 제한)
        As port transport system consists of subsystems such as navigation system, cargo handling system, storage system, inland transport system, and Management and Information system, the productivity of this system is determined by the minimum level of subsystem. From the viewpoint of elaborating the efficiency of integrated system, it is valuable to determine the optimal level of harbour tug boat which is the most important factor of navigation system. This paper treats the optimal amount of harbour tug boat by simulation, and applied to Pusan port. In the course of simulation, an emperical formula is introduced for determining the Horse Power (HP) of tug boat by the ship's gross tonnage (G/T) refering to the cases of various ports of other countries, that is ; Y=9.96X0.6+569. X : The gross tonnage of vessel (G/T). Y : The Horse Power (HP) of tug boat. The results of the simulation are summarized as follows ; 1) In 1987, three or four low-powered harbour tug boats, five mid-powered harbour tug boats and four high-powered harbour tug boats are necessary in the mean level. But, five or seven low-powered harbour tug boats, ten mid-powered harbour tug boats and eight high-powered harbour tug boats are necessary lest delay should occur at all. 2) In 1992, 1lee or four low-powered harbour tug boats, six mid-powered harbour tug boats and seven high-powered harbour tug boats are estimated and be necessary in the mean level.
        70.
        1988.12 서비스 종료(열람 제한)
        Since the middle of 1950's when sea transportation service by container ship was established, containerization has been rapidly spread over the world with realization of intermodalism, and becomes an index of economy growth of a country. Our country has established Pusan Container Terminal at Pusan harbour in 1978 in step with worldwide trend of containerization, and is constructing New Container Terminal at Pusan outharbour which will be completed in 1990. This paper aims to make a quantitative analysis of the Pusan Container Terminal system through the computer simulation, especially focusing on its subsystems such as ship stevedoring system, storage system and transfer system. First, the capacity of various subsystems are evaluated and it is checked whether the current operation is being performed effectively through the computer simulation. Secondly, the suggestion is presented to improve the operation by considering the throughput that Pusan Container Terminal will have to accept until 1990, when New Container Terminal will be completed. The results are as follows ; 1) As the inefficiency is due to the imbalance between various subsystems at Pusan Container Terminal on the basis of about 1.2 million TEU of container traffic, transfer equipment level must be up to 33% for transfer crane, and free period must be reduced into 4/5 days for export/import. 2) On the basis of about 1.4 million TEU of container traffic, transfer equipment level must be up to 12% for gantry crane, 11% for straddle carrier and 66% for transfer crane, and free period must be reduced into 3/4 days for export/import. 3) On the basis of about 1.7 million TEU of container traffic, transfer equipment level must be up to 25% for gantry crane, 28% for straddle carrier and 100% for transfer crane, and free period must be reduced into 3/4 days for export/import. 4) On the basis of about 2 million TEU of container traffic, transfer equipment level must be up to 25% for gantry crane, 30% for straddle carrier and 110% for transfer crane, and free period must be reduced into 2/3 days for export/import, and it is necessary to enlarge storage yard.
        71.
        1988.12 서비스 종료(열람 제한)
        From the viewpoint of physical distribution, the port transport process can be regarded as a system which consists of various subsystems such as navigational aids, quay handling, transfer, storage, information If management, and co-ordination with inland transport. The handling productivity of this system is determined by the production level of the least productive subsystem. So, a productivity analysis on the flow of cargoes through each subsystem should be made in order to achieve efficient port operation. The purpose of this paper is to analyze the productivity of each subsystem in Pusan port, and to bring forward problems and finally to draw up plans for their betterment. Analyzed results on the productivity of each subsystem are as follows, i) It is known that the number of tugs with low HP should be increased by a few, the number of tugs with medium HP is appropriate, and the number of tugs with high HP is in excess of that necessary. ii ) In the case of container cargoes, it is found that the transfer and storage systems in BCTOC have the lowest handling capability, with a rate of 115%, leading to bottle-necks in the port transport system, while the handling rate of the storage and quay handling systems in general piers is in excess of the inherent capability. iii) In the case of the principal seaborne cargoes passing through general piers, there is found to be a remarkable bottle-neck in the storage system. In the light of these findings, both the extension of storage capability and the extension of handling productivity are urgently required to meet the needs of port users. Therefore, iv) As a short-term plan, it is proposed that many measures such as the reduction of free time, the efficient application of ODCY, etc must be brought in and v) In the long-trun, even though the handling capability will accommodate an additional 960,000 TEU in 1991, the scheduled completion date of the third development plan of Pusan port, insufficiency of handling facilities in the container terminal is still expected and concrete countermeasures will ultimately have to be taken for the port's harmonious operation. In particular, the problem of co-ordination with inland transport and urban traffic should be seriously examined together in the establishment of the Pusan port development. As a method of solving this, vi) It is suggested that Pusan port (North port) should be converted into an exclusive container ternimal and overall distribution systems to the other ports for treating general cargoes must be established. vii) And finally, it is also proposed that the arrival time (cut-off time) of influx cargoes for exports such as general merchandise and steel product should be limited, with a view to securing cargoes suitable for the operational capability of BCTOC.
        72.
        1988.12 KCI 등재 서비스 종료(열람 제한)
        The increase in seaborne cargoes has made our coastal traffic congested, and future coastal traffic is also expected to increase considerably as result of our economic development and high dependence on foreign trade. This increased traffic may be a cause of serious sea pollution as well as greater number of sea accidents. In view of this problem the introduction of VTMS along on our coast is required, following careful study of a large number of foreign systems. This paper analyzes the actual condition of 132 VTMSs in the world from the view point of management method authority of VTMS, coverage and characteristics of system. And this results provide helpful information for the development of VTMS in the future and for the implementation of VTMS in our coastal waterway.
        73.
        1988.08 KCI 등재 서비스 종료(열람 제한)
        The amount of cargoes and fishery production have increased continuously during the last decade due to the great growth of the Korean economy. These increasements have made our coastal traffic congested, and the future coastal traffic is also expected to increase considerably. The increased traffic can be a cause of large sea pollution as well a s greater sea casualties us as properties and human lives, which could result in a big national loss. In order to prevent the sea casualties and promote the safety of coastal traffic, the Vessel Traffic Management System (VTMS) along the Korean coastal waterway is inevitably introduced. But, the precise evaluation is necessary required prior to the implementation of VTMS because this system necessitates a huge amount of budgets. This paper aims to propose the model of evaluation process, but the evaluation as to the urgency of establishment is not only very complicated and fuzzy but also affected by the subjectivity of human. Therefore, fuzzy integral is adopted as the mathematical model of evaluation in which decision-maker can intervence by making decision considering the calculated membership-function. Four aspects, namely, the frequency of sea-casualities, the traffic volume, the frequency fuzzy day, and the complexity of waterway are selected as the item of evaluation, and the fuzzy measure are applied to the evaluation of 8 candidated regions such as the adjacent area to the port Inchen, Kunsan, Mokpo, Wando, Yosu, Pusan, Pohang, Donghae. As a result of evaluation, the priority as to the candidated regions is obtained, and the following prior execution regions, namely, the adjacent area to the port Pusan, Yosu, Mokpo & Wando are selected by considering the present situation, but, in the long run, the VTMS should be executed in the whole coast of the nation, through the cost-effectiveness analysis.
        74.
        1988.04 KCI 등재 서비스 종료(열람 제한)
        From the point of view of safety of life and property at sea and the protection of the marine environment, the Vessel Traffic Management System along the Korea coastal waterway is inevitably introduced. But the establishing priority per area must be evaluated under the restricted budget. In this case, the estimated traffic flow has a major effect on priority evaluation. In the former paper <I>, an algorithm was proposed for estimating the trip distribution between each pair of zones such as harbours and straits. This paper aims to formulate a simulation model for estimating the dynamic traffic flow per area in the Korea coastal waterway. The model consists of the algorithm constrined by the statistical movement of ships and the observed data, the regression analysis and the traffic network evaluations. The processed results of traffic flow except fishing vessel are summarized as follows ; 1) In 2000, the traffic congestions per area are estimated, in proportion of ship's number (tonnage), as Busan area 22.3%(44.5%), Yeosu area 19.8%(11.2%), Wando-Jeju area18.1%(6.8%), Mokpo area 14.9%(9.9%), Gunsan area 9.1%(9.3%), Inchon area 8.1%(7.7%), Pohang area 5.5%(8.5%), and Donghae area 2.2%(2.1%). 2) For example in Busan area, the increment of traffic volume per annum is estimated 4, 102 ships (23 million tons) and the traffic flow in 2000 is evaluated 158, 793 ships (687 million tons). 3) consequently, the increment of traffic volume in Busan area is found the largest and followed by Yeosu, Wando-Jeju area. Also, the traffic flow per area in 2000 has the same order.
        75.
        1987.09 KCI 등재 서비스 종료(열람 제한)
        Trip distribution plays an important role in the analysis and network evaluation phases of the transportation and the traffic planing process. In this paper, the authors propose an algorithm for estimating the trip distribution between each pair of zones such as harbours and straits. The algorithm is formulated by using the observed data and introducing the concept of entropy when observed data between harbours were not existed. In order to examine the feasbility , the proposed algorithm is applied to ships on traffic route in Hanryu Sudo and in Korea costal waterway. And also, its validity is examined by comparing another algorithm through statistical test.
        76.
        1987.03 KCI 등재 서비스 종료(열람 제한)
        Since the middle of 1950's, containerization has been rapidly spread over the world in virtue of great merits providing to interensts, and the fundamental changes in port management and prot operations are resulted. As the container terminal is a complex system which is consisted of various subsystems, the treatment for improving the productivity is required in a comprehensive fashion, both in each of its parts and as an integrated system. This paper aims to make an intensive analysis of the Busan Container Terminal system, especially focusing on its subsystems such as ship operation system, storage system and transfer system. First of all, the intrinsic capacity of various subsystems is calculated and it is checked whether the current operation is being performed effectively through the formal analysis. Secondly, the suggestion is presented to improve the operation by considering the throughput that the port of Busan will have to accept in the near future. The results are as follows; 1) As the inefficiency is due to the imbalance between various subsystems at Busan terminal, transfer equipment level must be up to 31% for straddle carrier and 67% transfer crane above all. 2) The yard capacity must be increased by reducing the free dwell time of containers in order to accept the traffic volume smoothly in the near future. 3) The better way to reduce the port congestion is to change berthing rule from the FIFP to the Pre-allocated system by considering the ship arrival pattern.
        77.
        1987.03 KCI 등재 서비스 종료(열람 제한)
        The amount of cargoes by cargo vessels has increased tremendously during the last decade due to the great growth of korea economy. But in spite of this trend, there is rarely the substantial analyzed on the operational status of coastal shipping. In this paper, the characteristics of seaborne cargo and traffic flow of coastal shipping surveyed in detail through the statistical and the origintain and destination (O.D) analysis. Also, the basic ship's tonnage of coastal shipping representing the minimum tonnage which is capable of carrying the given seaborne cargo is suggested through the computer simulation using the data of 1985 year. The results are as follows; 1) the about 80% of total coastal traffic volume is going in/out to the port of Incheon, Busan, Pohang, Samil, Bukpyung, Mukho, Samchuk, and Jeju. 2) The main cargo items such as oil, iron material, cement, anthracite grain, fertilizer, other ore are reached to the about 70% of total amount of coastal trade. 3) ship's tonnage going in/out to the port of Bukpyiung, Busan, Pohang is increasing linearly year by year, and the amount of oil, iron material, cement, anthracite, grain, fertilizer, other ore are also increasing in linear pattern. 4) As a result of simulation, the optimum (basic) ship's tonnage.
        78.
        1986.11 KCI 등재 서비스 종료(열람 제한)
        Generally, the development of shipping is characterized by the amount of traffic flow (traffic volume) and seaborne cargo in the sea. Movement of ships is an essential element of constructing the traffic flow which is represented the dynamic movement of ships in the sea, but on the other band the numbers of arriving and departing the port is the basic factor consisting of the static movement of ships. The amount of cargoes by coastal vessels and ocean trade vessels have increased tremendously with the great growth of the Korean economy these days. This increase of the seaborne cargoes has made the Korean coastal traffic flow so congested that this can be a cause of large pollution as well as great marine casualities such as a loss of human lives and properties . And also the future coastal traffic is expected to increase considerably according to our economic development and high dependence upon foreign trade. Under the circumstance, to devise the safety of coastal traffic flow and to take a proper step of a efficient navigation, there is a necessity for analyzing and surveying the coastal traffic trend and the characteristics of cargo movement. In order to grasp the dynamic movement of ships in the Korean coast, O/D analysis is executed. This paper aims to secure the basic data necessary for a comprehensive plan and estimation of vessel traffic management system for the enhancement of safety, order and efficiency of vessel traffic in the Korean coast. The analyzed results of the traffic flow and seaborne cargoes of the Korean coast are summarized as follows : 1) The congestion by the vessels occurred around the ports such as-in proportion of ship's number (proportion of tonnage) -Incheon 18.5%(14.8%), Pohang 5.9% (9.9%), Samil 5.2%(8.3%), Mokpo 8.6%(0.8%), Pusan 13.5%(36.4%), Ulsan 9.1%(16.2%). 2) It is found that the area adjacent to Incheon, Pusan, Ulsan, Channel of Hanryu and South-western area are heavily congested. 3) It is confirmed thatthe area adjacent to Incheon, Pusan, Ulsan, Channel of Hanryu and South-western area are heavily congested. 3) It is confirmed that the coastal vessels are main elements constituting the coastal traffic and that there are much traffic flow among five ports as following through the precise O/D analysis of ship's coastal movement. Incheon-Samil, Ulsan, Pusan, Jeju Pusan -Samil, Ulsan, Incheon, Jeju Pohang -Samil, Inchoen, Jeju Pohang -Samil, Incheon, Jeju Ulsan -Samil, Incheon, Jeju Samil -Ulsan, Pusan, Incheon 4) The amount of cargoes to abroad are in proportion about 81% of total and the amount of coastal cargoes are about 19%. Of those, cargoes in and out to Japan are about 26% and to South-east Asia are about 27%. 5) The chief items of foreign cargoes are oil(38.33%), iron ore(13.98%), bituminoous coal(12.74%), grain(8.02%), lumber(6.45%) in the import cargoes and steel material(21.96%), cement(17.16%), oil(6.81%), fertilizer(3.80%) in the export cargoes. 6) The 80.5% of total export cargoes and 92.4% of total import cargoes are flowed in five main ports. 7) The chief items of coastal cargoes are oil (42.45%), cement(16.86%), steel material (6.49%), anthracite(6.31%), mineral product(4.3%), grain, and fertilizer. Almost 92.24% of total import and export oil cargoes in Korea is loaded and unloaded at the port of Samil & Ulsan.
        79.
        1985.10 KCI 등재 서비스 종료(열람 제한)
        The purpsoe of automatic steering system is to keep the ship's course stable with the minimum course error and rudder angle, and there have been a number of studies as to the optimal design and adjustment of the autopilot. Recently, modern control theories are being used widely in analyzing and designing the system. When a ship is at sea, autopilot installed on the ship plays an important role, particularly in the respect of economic aspects, that is, when the design and the adjustment of adjustable parameters are not conducted perfectly, the amount of loss in energy and the extension of sailing distance become large. Therefore the optimal design and adjustment of a autopilot are very important. Though P.I.D type autopilots are widely spread and generally used in modern ships, the suitability and the adjusting method are not clarified. In this paper the authors considered the stabilaity and the economical efficiency of the P.I.D. type autopilot and investigated various facts which should be considered at the time of designing and using the P.I.D. type autopilot through the digital computer simulation.
        80.
        1985.06 KCI 등재 서비스 종료(열람 제한)
        The transport of cargoes carried by coastal and ocean-going vessels has increased with the rapid growth of the Korean economy these days. This increase of the sea-borne cargoes has made the Korean coastal traffic so congested that this can be a cause of large pollution as well as great marine casualties such as loss of human lives and properties. Marine casualties generally result from the complicated interaction of natural and human factors; the former being the topographic, marine traffic volume and meteorological conditions, and the latter being the quality of seafares. In this paper, the authors analyse the trend of marine casualties in the Korean coastal and clear up the cause of accidents and examine closely the mutual relations among sea accidents, weather conditions, and marine traffic volume. These accidents are classified into several patterns on hte point of view of ship's size, ship's type and ship's age and its characteristics of each pattern are described in detail. Also, the authors estimate the amount of economical losses resulting from marine casualties which are classified into the accident patterns, and clarify the effects of those losses on B/B(Balance Sheet) and P/L(Profit & Loss) of Korean shipping companies and Korean national economy. The analyzed results of marine casualties are summarized as follows: 1) The average number of sea accidents is 248 cases per year with the loss of 107 persons during last 13 years. 2) Collision is the top of causes of sea accidents (approx. 36.4%), shipwreck the second (approx. 20.3%), agroung the third rank (approx. 18.2%). 3) The ship's number under 1, 000G/T is approx. 74% of total ship's number of accidents. 4) 80% of total number of marine accidents is taken plact at the coastal waters. (involved ports & narrow channels) 5) Marine casualties are occur likely to in the night, the winter and the summer. 6) The average amount of economical losses is approx. 18.5 billion won. (approx. 0.14% of GNP) 7) Shipwreck is the top of the amount of economical losses (approx. 60.4%), collision the second (aprox. 24.5%), aground the third (approx. 9.9%). 8) The amount of economical losses is approx. 5.24% of gross capital of shipping co., 1.24% of shipping revenue, 1.38% of shipping total income in 1983.
        1 2 3 4 5