본 논문에서는 대규모 실시간 매칭의 생존 게임에서 플레이를 위한 유저들의 소셜 관계에 대해 연구한다. 특 히 “사전 팀 구성”을 통한 자의적인 팀 구성이 어떤 방식으로 유저들을 연결하는 지 연구하고자 한다. 다수 의 사람 간 집단 역학에서 나타나는 특성이나 패턴에 대한 조사를 중심으로 하였으며, 개인의 특성은 보조적 인 수단으로만 사용된다. 이번 연구에서는 게임을 플레이하는 유저들의 익명화 된 대규모 데이터를 활용하며 이에 대한 간소화된 집계 방법을 제안한다. 데이터 세트에는 사전 팀 구성에 관한 11,259만 줄의 속성이 포 함되어 있으며, 데이터에서 우리는 250만개의 노드와 1,182만개의 무방향 에지가 있는 협업 네트워크를 구성 하여 대규모 게임 내 협동 네트워크를 만듭니다. 연결 정도, 경로 길이, 클러스터링 및 소속 하위 컴포넌트의 크기 등 네트워크에 관한 수치를 통해 게임내 소셜 활동에 대한 이해를 높이고자 한다. 본 논문에서는 다음 의 두가지 특성을 중심으로 결론을 제시한다. 첫째, 네트워크 내에는 대규모로 연결된 2개(전체의 44% 및 2%)와 나머지의 파편화된 하위 컴포넌트로 구성 되어있다. 이 대규모 컴포넌트 중 작은 쪽은 한국 유저로만 구성되어 있다. 둘째, 컴포넌트 크기 별 평균 연결 거리와 군집화 계수, k-core를 확인함으로써 기타 다른 네 트워크 대비 이웃 간 연결이 강하면서 전체적으로는 비교적 멀리 떨어져 있음을 확인한다.
The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.
We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on Hi morphology, Hi deficiency, and relative extent to the stellar disk, from the VIVA survey. We then employ a new scheme for galaxy classification which combines Hi mass fractions and locations in projected phase space, resulting in a new sample of 365 galaxies. We utilize a variety of star formation tracers, which include g - r, WISE [3.4]-[12] colors, and starburstiness that are defined by stellar mass and star formation rates to compare the star formation activity of galaxies at different stripping stages. We find no clear evidence for enhancement in the integrated star formation activity of galaxies undergoing early to active stripping. We are instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, in agreement with previous studies. Our results suggest that if there is any ram pressure stripping induced enhancement, it is at best locally modest, and galaxies undergoing enhancement make up a small fraction of the total sample. Our results also indicate that it is possible to trace galaxies at different stages of stripping with the combination of Hi gas content and location in projected phase space, which can be extended to other galaxy clusters that lack high-resolution Hi imaging.
In this study, epoxy composites were reinforced with multi-walled carbon nanotubes and fused silica particles, dispersing the fillers within the epoxy resin based on a simple physical method using only shear mixing and ultrasonication. The hybrid composite specimens with 0.6 wt% of carbon nanotubes and 50 wt% of silica particles showed improved mechanical properties, with increase in tensile strength and Young’s modulus up to 12 and 37%, respectively, with respect to those of the baseline specimens. The experimental results showed that the low thermal expansion of the silica particles improved the thermal stability of the composites compared with that of the baseline specimen, whereas the thermal expansion slightly increased, due to the increased heat transfer from the exterior to the interior of specimens by the carbon nanotube filler. The coefficient of thermal expansion of the hybrid composite specimen reinforced with 0.6 wt% of carbon nanotubes and 50 wt% of silica particles was decreased by 25%, and the thermal conductivity was increased by about 84%, compared with those of the baseline specimen.
The Geomunoreum Lava Tube System, declared as a UNESCO World Heritage Site, has a unique natural ecosystem. The information available about this ecosystem, which contains lava caves with secondary carbonate speleothems, is sparse. Hence, extensive research is warranted for establishing a conservation standard. We commenced microbial research on the system and have been studying the microorganisms coating the lava tube wall to acquire fundamental information for understanding the lava cave ecology of Jeju Island. Samples were collected from yellow-colored walls in six caves that are part of the system―the Bengdwi, Utsanjeon, Bukoreum, Manjang, Gimnyeong, and Yongcheon caves. This study focused on yellow walls as it is the most easily distinguished color. According to previous studies, the color of cave walls is attributed to microorganisms or their components. To determine whether the yellow mats from the Jeju lava tube walls are caused by microorganisms, we examined samples at the microscopic scale, by staining mats and analyzing bacterial isolates from glitter particles. As a result, we found that the yellow walls of lava tubes are comprised of microbial mats.
Samples were collected from planktonic habitats of the fresh and brackish waters in Korea from August 2016 to May 2018. As a result, three genera and nine species were newly recorded in Korea. The unrecorded indigenous genera were Anathece, Chondrocystis and Geminocystis, and nine species were Anabaenopsis arnoldii, Anathece smithii, Chondrocystis dermochroa, Coelosphaerium aerugineum, Eucapsis microscopica, Geminocystis herdmanii, Microcystis panniformis, Synechococcus nidulans and Woronichinia karelica. Anathece smithii, Coelosphaerium aerugineum, Eucapsis microscopica, Microcystis panniformis and Synechococcus nidulans had been reported to inhabit freshwater, but these were found in brackish water in this study. Microcystis panniformis, which is a potential genus for causing green-tide, is taxonomically valuable in Korea.
Ochratoxin A, which is frequently detected in cereals and infant diets worldwidely, is a mycotoxin to damage mainly the kidney and liver. Because ochratoxin A is highly thermostable compound. it is necessary to study ways of reducing level of ochratoxin A by controling processing steps. However, food processes, including extrusion, expansion, roasting, and steam cooking, which are used in order to mitigate the contents of ochratoxin A, are known to produce polycyclic aromatic hydrocarbons, which are generated from radicals decomposed by pyrolysis. Therefore, this study analyzed the levels of 4 polycyclic aromatic hydrocarbons, benz (a) anthracene, chrysene, benzo (b) fluoranthene and benzo (a) pyrene in rice-based products made in high pressure and heating process. Rice samples were finely ground, and homogenized samples were alkaline treatement with 1 M KOH/EtOH and extracted with liquid-liquid extraction method using n-hexane. The extracted solution was pretreated with a silica cartridge. The purified solution was dried with nitrogen gas and dissolved in 1 mL of dichloromethane and injected into GC/MSD. We had overall recoveries for 4 polycyclic aromatic hydrocarbons spiked into rice samples ranging from 92.8 to 110.2%. The limit of quantitations of benz (a) anthracene, chrysene, benzo (b) fluoranthene and benzo (a) pyrene in rice-based product were 0.19 ng/g, 0.38 ng/g, 0.51 ng/g, and 0.31 ng/g, respectively. However, these 4 polycyclic aromatic hydrocarbons in all processed rice samples were not detected.
We present analyses of 1250 variable sources identied in a 20 square degree eld toward NGC 2784 by the KMTNet Supernova Program. We categorize the variable sources into three groups based on their B-band variability. The rst group consists of 31 high variability sources with their B- band RMS variability greater than 0.3 magnitudes. The second group of medium variability contains 265 sources with RMS variability between 0.05 and 0.3 magnitudes. The remaining 951 sources belong to the third group of low variability with an RMS variability smaller than 0.05 magnitudes. Of the entire 1250 sources, 4 clearly show periods of variability greater than 100 days, while the rest have periods shorter than 51 days or no reliable periods. The majority of the sources show either rather irregular variability or short periods faster than 2 days. Most of the sources with reliable period determination between 2 and 51 days belong to the low-variability group, although a few belong to the medium-variability group. All the variable sources with periods longer than 35 days appear to be very red with BV > 1.5 and V I > 2.1 magnitudes. We classify candidates of 51 Cepheids, 17 semi-regular variables, 3 Mira types, 2 RV(B) Tauri stars, 26 eclipsing binary systems and 1 active galactic nucleus. The majority of long-term variables in our sample belong to either Mira or semi-regular types, indicating that long-term variability may be more prominent in post-main sequence phases of late-type stars. The depth of the eclipsing dips of the 26 candidates for eclipsing binaries is equivalent to 0.61 as the average relative size of the two stars in the binary system. Our results illustrate the power of the KMTNet Supernova Program for future studies of variable objects.
A large-scale neutral hydrogen (H i) ring serendipitously found in the Leo I galaxy group is 200 kpc in diameter with MHi ~ 1:67 X 109M⊙, unique in size in the Local Universe. It is still under debate where this Hi ring originated - whether it has formed out of the gas remaining after the formation of a galaxy group (primordial origin) or been stripped during galaxy-galaxy interactions (tidal origin). We are investigating the optical and Hi gas properties of the dwarf galaxies located within the gas ring in order to probe its formation mechanism. In this work, we present the photometric properties of the dwarfs inside the ring using the CFHT MegaCam u*, g', r' and i'-band data. We discuss the origin of the gas ring based on the stellar age and metal abundance of dwarf galaxies contained within it.