검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 138

        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Moso bamboo, as a kind of renewable functional material, exhibits outstanding development potential. It is promising to prepare activated carbon with good mechanical strength and high specific surface area using moso bamboo as raw material. In this work, we employed a hydraulic extruder to extrude the bamboo charcoal and the adhesive to obtain the moso bamboo activated carbon, and improved the specific surface area of the columnar activated carbon through high-temperature water vapor activation. Through the catalytic role of the water vapor activation process, the formation and expansion of the pores were promoted and the internal pores were greatly increased. The obtained columnar activated carbon shows excellent mechanical strength (93%) and high specific surface area (791.54 m2/ g). Polyacrylamide@asphalt is one of the most effective adhesives in the high-temperature water vapor activation. The average pore size (22.99 nm) and pore volume (0.36 cm3/ g) of the prepared columnar activated carbon showed a high mesoporous ratio (83%). Based on the excellent pore structure brought by the activation process, the adsorption capacity of iodine (1135.75 mg/g), methylene blue (230 mg/g) and carbon tetrachloride (64.03 mg/g) were greatly improved. The resultant moso bamboo columnar activated carbon with high specific surface area, excellent mechanical properties, and outstanding adsorption capacity possesses a wide range of industrial applications and environmental protection potential.
        4,600원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, the present work focuses on the effective counter electrode for dye-sensitized solar cells. The bottom–up approach was adapted to synthesize Mn2O3 nanorods via the hydrothermal method and the reduced graphene oxide was merged with Mn2O3 to prepare a nanocomposite. The prepared nanocomposites were subjected to physio-chemical and morphological characterizations which revealed the crystalline nature of Mn2O3 nanorods. The purity level rGO was characterized using the Raman spectrum and the Fourier transform infrared spectroscopy employed to find the functional groups. The morphological micrographs were visualized using SEM and TEM and the high aspect ratio Mn2O3 nanorods were observed with 5–7 nm and supported by rGO sheets. The electrocatalytic nature and corrosion properties of the counter electrode towards the iodide electrolyte were studied using a symmetrical cell. The as-synthesized nanocomposites were introduced as counter electrodes for DSSC and produced 4.11% of photoconversion efficiency with lower charge transfer resistance. The fabricated DSSC devices were undergone for stability tests for indoor and outdoor atmospheres, the DSSC stability showed 93% and 80% respectively for 150 days.
        4,000원
        4.
        2024.06 구독 인증기관 무료, 개인회원 유료
        In the history of Chinese academics, Xu Shen’s Shuowen Jiezi (hereinafter referred to as Shuowen) is known as “the first of its kind in the world” because it has the dual characteristics of explaining the form, sound, and meaning of Chinese characters and the characteristics of theoretical works on philology, both of which are practical. It has not only become a treasure of codex for the compilation of character books and exegesis, but also laid down the basic patterns of traditional philology and biblio-linguistics, with far-reaching influence. Many scholars have researched Shuowen in the past dynasties, resulting in the formation of an independent thematic discipline called Shuowen, also known as Xuxue (許學). According to Ding Fubao (丁福保), Shuowen jiezi Gulin (hereinafter referred to as Gulin) attached to the Yingyong Zhushu Xingshi Lu (引用諸書姓氏錄) statistics, there were as many as 203 people in the Qing Dynasty who studied and wrote Shuowen. In fact, there are many scholars and their achievements that are not included in the statistics. After Gulin, especially in the last 30 years, a lot of new materials of scholars in the Qing Dynasty who studied the Shuowen have been excavated and published. Most of these new materials are dispersed in their original state in different large series, so they are rarely researched and utilized, and their documentary and scholarly value is in urgent need of formal recognition. Based on the preliminary results of the major project of the National Social Science Foundation (21&ZD299) chaired by Li Yunfu (李運富), this article discusses the excavation, collation, and research of new materials on Shuowen in the Qing Dynasty.
        6,900원
        6.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe3O4. The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model (R2 > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater.
        4,000원
        7.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A glassy carbon electrode modified with a composite consisting of electrodeposited chitosan and carboxylated multi-walled carbon nanotubes (e-CS/MWCNTs/GCE) was used as a working electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and melatonin (MT), which were related to circadian rhythms. The electrochemical characterizations of the working electrode were carried out via electrochemical impedance spectroscopy and chronocoulometry. It was found that electrochemical modification method, that was cyclic voltammetry, may can cause continuous CS polymerization on MWCNTs surface to form a dense membrane with more active sites on the electrode, and the electrochemically active surface area of e-CS/MWCNTs/GCE obtained was about 7 times that of GCE. The electrochemical behaviour of DA, 5-HT and MT on working electrode were carried out via differential pulse voltammetry and cyclic voltammetry. The results showed that e-CS/MWCNTs/GCE solved the problem that the bare electrode could not detect three substances simultaneously, and can catalyze oxidation potential difference as low as 0.17 V of two substances reaction at the same time, indicating very good electrocatalytic activity. By optimizing the detection conditions, the sensor showed a good linear response to DA, 5-HT and MT in the range of 20-1000 μmol/L, 9-1000 μmol/L and 20-1000 μmol/L, and the detection limits were 12 μmol/L, 10 μmol/L and 22 μmol/L (S/N = 3), respectively. In addition, the proposed sensor was successfully applied to the simultaneous detection of DA, 5-HT and MT in human saliva samples.
        4,200원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An environmentally friendly and low-cost chitosan-containing polysaccharide (CP) composite ZIF-8/CP was designed and prepared based on the difficulty of separating the traditional adsorbent from the water phase. ZIF-8/CP was synthesized through in-situ growth approach. The physical, chemical and structure properties of ZIF-8/CP were determined through a series of characterization methods, including SEM, FT-IR and PXRD. The effects of touch time, pH, temperature, and coexisting ions on adsorption were assessed. In addition, kinetics, isotherms of adsorption and thermodynamics were examined. The data of isotherms for adsorption indicated that the adsorption of ZIF-8/CP on MG was similar to the Langmuir model, with a maximum adsorption capacity of 1428.57 mg/g. Moreover, the kinetic parameters were consistent with the pseudo- 2nd-order equation. Thermodynamic studies (ΔG < 0, ΔH > 0) demonstrated a heat-absorbing and spontaneous adsorption process. Our study reveals that ZIF-8/CP has good adsorption properties and environmental properties.
        4,200원
        9.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Decabromodiphenyl ether (BDE209) is a persistent aromatic compound widely associated with environmental pollutants. Given its persistence and possible bioaccumulation, exploring a feasible technique to eradicate BDE209 efficiently is critical for today’s environmentally sustainable societies. Herein, an advanced nanocomposite is elaborately constructed, in which a large number of titanium dioxide ( TiO2) nanoparticles are anchored uniformly on two-dimensional graphene oxide (GO) nanosheets ( TiO2/GO) via a modified Hummer’s method and subsequent solvothermal treatment to achieve efficient photocatalytic degradation BDE209. The obtained TiO2/ GO photocatalyst has excellent photocatalytic due to the intense coupling between conductive GO nanosheets and TiO2 nanoparticles. Under the optimal photocatalytic degradation test conditions, the degradation efficiency of BDE209 is more than 90%. In addition, this study also provides an efficient route for designing highly active catalytic materials.
        4,000원
        10.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        How to effectively deal with the polluted water by the pollutant of organic dyes is the world problem. It is of great significance if the organic dyes in the polluted water can be directly turned into the useful materials through a facile approach. Herein, the water which contains the common organic dye, Reactive red 2 (RR2), has been chosen to be the model to synthesize graphene quantum dots (GQDs) by a facile route. The comprehensive characterizations, including TEM (HRTEM), XPS, Raman, PL and UV–Vis. spectra, have been performed to confirm the structures and explore the properties of the synthesized GQDs. Meanwhile, the excellent PL properties and low biotoxicity of the GQDs confer them with the potential applications in the biological fields. When the GQDs are excited by the wavelength of 360 nm, the maximum emission is achieved at 428 nm. It is well demonstrated that the synthesized GQDs are able to detect the Al3+ which causes multiple diseases, such as Parkinson, Alzheimer, kidney disease, and even cancer. The detection range is from 90 to 800 μM, which is different from the reported kinds of the literature. Therefore, this work not only provides an economical and environmental route on solving the universal problem from organic dyes, but also facilitates to advancing the synthesis and application of GQDs.
        4,000원
        12.
        2022.10 구독 인증기관·개인회원 무료
        Niobium (Nb) is present in Ni-based alloys and stainless steels used in nuclear reactors as structural materials. Nb-93 is a naturally occurring and stable isotope of niobium and Nb-94 (half-life = 20,000 years) is produced by neutron activation of Nb-93. Nb-94 can be present in waste streams from dismantling of nuclear power plants and treatment of the primary coolant circuit. Hence, the radioactive wastes containing active Nb-94 are disposed of in the repositories for low- and intermediate-level waste (LILW). Nb predominantly exhibits a pentavalent oxidation state (i.e., +V) within the stability field of water. Cementitious materials (concrete, mortar, and grout) are extensively utilized in LILW disposal systems as structural components and chemical agents for the stabilization of waste. Solubility defines the source term (i.e., upper concentration limit) in the repository system. However, the solubility behavior of Nb in cementitious systems at high pH remains ill-defined, and information available on the Nb solid phases controlling the solubility is scarce and often ambiguous. Sorption on cementbased materials is one of the main mechanisms controlling the retention of niobium(V) in a LILW repository, and distribution coefficients (Rd) are necessary to evaluate the retention capacity by sorption in the safety assessment of disposal systems. Available sorption data of Nb(V) on cement showed a large discrepancy in Rd, moreover, no sorption data is available for Nb(V) under conditions characterizing the first degradation stage of cement (young cement condition) at pH 13 – 13.5. In this context, the solubility of Nb was extensively investigated in porewater conditions representative of the cement degradation stage I, as well as in CaCl2-Ca(OH)2 systems. Special focus was given to the accurate characterization of the solubility-controlling solid niobium phases. We also studied the sorption of Nb(V) by hardened cement pastes (HCP) and calcium silicate hydrates (CSH, major hydrate of HCP). This work provides the results on Rd, sorption isotherm and sorption mechanisms of Nb(V). Besides, the impact of ISA (polyhydroxycarboxylic acid generated by the degradation of cellulose) on Nb(V) sorption and the dissolution of cement materials was investigated.
        13.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acrylonitrile–butadiene–styrene (ABS) terpolymer was compounded with short carbon fiber (CF) and carbon nanotube (CNT) using a micro-extruder followed by the injection molding process. Composite samples were fabricated with loading ratios of 20 wt.% CF and 0.1, 0.5 and 1.0 wt.% of CNT. Mechanical, electrical, thermo-mechanical, thermal, melt-flow, and structural investigations of ABS-based composites were conducted by performing tensile, impact, hardness, and wear tests, conductive atomic force microscopy (AFM), dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA), melt flow rate test (MFR), scanning electron microscopy (SEM) characterization techniques, respectively. According to mechanical test data of resultant composites including tensile and impact test findings, CNT additions led to the remarkable increase in tensile strength and impact resistance for CF reinforced ABS composites. The formation of synergy between CNT nanoparticles and CF was confirmed by electrical conduction results. The conductive path in ABS/CF composite system was achieved by the incorporation of CNT with different loading levels. SEM micrographs of composites proved that CNT nanoparticles exhibited homogeneous dispersion into ABS matrix for lower loadings.
        4,300원
        14.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the arsenide removal by using mesoporous CoFe2O4/ graphene oxide nanocomposites based on batch experiments optimized by artificial intelligence tools. These nanocomposites were prepared by immobilizing cobalt ferrite on graphene oxide and then characterized using various techniques, including small angle X-ray diffraction, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. Artificial intelligence tools associated with response surface methodology were employed to optimize the conditions of the arsenide removal process. The results showed that back propagation neural network combined with genetic algorithm was suitable for the arsenide removal from aqueous solutions by the nanocomposites based on the minimum average values of absolute errors and the value of R2. The optimal values of the four variables (operating temperature, initial pH, initial arsenide concentration, and contact time) were found to be 25.66 °C, 7.58, 10.78 mg/L and 46.41 min, and the predicted arsenide removal percentage was 84.78%. The verification experiment showed that the arsenide removal percentage was 86.62%, which was close to the predicted value. Three evaluation methods (gradient boosted regression trees, Garson method and analysis of variance) all demonstrated that the temperature was the most important explanatory variable for the arsenide removal. In addition, the arsenide removal process can be depicted with pseudo-second-order kinetics model and Langmuir isotherm, respectively. The thermodynamics investigation disclosed that the adsorption process was of a spontaneously endothermic nature. In summary, this study showed that ANN-GA was an efficient and feasible method in determining the optimum conditions for arsenic removal by CoFe2O4/ graphene oxide nanocomposites.
        4,900원
        16.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study evaluated the influence of rumen inocula of different breeds on in vitro fermentation with forage and concentrate substrates. An in vitro was conducted under a 2×2 factorial arrangement with two breeds (Jersey and Holstein steers) and two feed substrates (forage and concentrate) as factors. Three Jersey and 3 Holstein steers were used for the source of in vitro inocula. Metataxonomic analysis of donor rumen fluids showed that Firmicutes was more abundant in Jersey, while Bacteroidetes in Holstein steers. In vitro ㏗ was lower in the fermented inocula of Jersey steers and in the concentrate substrate (p<0.05). After 24h, higher gas production, dry matter, and neutral detergent fiber degradability, and total volatile fatty acids concentration were noted in concentrate substrate (p<0.05). After 24h, inocula of Jersey steers had higher methane and ammonia-nitrogen (p<0.05). After 24h, fermented inocula of Holstein steers produced higher propionate (p<0.05). Conversely, in vitro butyrate production was higher in the fermented inocula from Jersey steers (p=0.072) and in those with concentrate substrate (p<0.05). After 24h, the total bacterial population (log10 c opies) was h igher in t he fermented inocula received from Jersey steers and in the concentrate substrate whereas, Fibrobacter succinogenes and Ruminococcus flavefaciens population were higher (p<0.05) only in the concentrate substrate. Overall results suggest that rumen inocula of different donors influence in vitro fermentation either with forage or concentrate substrates.
        4,000원
        17.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study employed a bibliometric method to visualize the evolution of corpus-based discourse studies between 1995 and 2019, with a total of 2,174 English-language documents and their 83,184 references collected from Scopus, the Social Science Citation Index, and the Arts & Humanities Citation Index. Co-citation analysis of the predominant authors, references, and publication sources disclosed that the field has expanded over the past 25 years from primary pattern analysis of descriptive and functional grammar to principal investigations of interdisciplinary issues, some of which are central to pragmatics and sociolinguistics. This shift of research focus is also evidenced by keyword analysis. Scholars have been progressively more fascinated by such social issues as news discourse, business discourse, gender and language, and identity. Some emerging topics like social media, media discourse, legal discourse, and the metadiscourse interpersonal model may represent research hotspots and trends in this area. Bibliometric approaches play an important role in providing hands-on evidence-based comparisons and visualizations of previous research outputs using different time bands.
        8,100원
        19.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the thermal shock and ablation resistance of high thermal conductivity carbon/carbon composites, carbon nanotubes (CNTs) were introduced by electrophoretic deposition. After modification, the flexural strength of the composites increases by 53.0% due to the greatly strengthened interfaces. During thermal shock between 1100 °C and room temperature for 30 times, the strength continues to increase, attributed to the weakened interfaces in favor of fiber and CNT pull-out. By introducing CNTs at interfaces, thermal conductivity of the composites along the fiber axial direction decreases and that along the fiber radial direction increases. As the thermal shock process prolongs, since the carbon structure integrity of CNT and matrix in the modified composites is improved, the conductivity increases whatever the orientation is, until the thermal stress causes too many defects. As for the anti-ablation performance, the mass ablation rates of the CNT-modified composites with fibers parallel to and vertical to the flame decrease by 69.6% and 43.9% respectively, and the difference in the mass ablation rate related with fiber orientations becomes much less. Such performance improvement could be ascribed to the reduced oxidative damage and the enhanced interfaces.
        4,500원
        20.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the effect of gas dispersing carbon nanotubes (CNTs) and hot pressing method on the transparency and the conductivity of thin films, the free arc was used to disperse the CNTs in a high dispersion rate, and the dispersed CNTs were rapidly pressed into the surface of the PET film by hot pressing to obtain electrical conductivity. The relationship between the light transmission and sheet resistance of the film was studied by changing the deposition time and the presence or absence of electrostatic adsorption. It was found that the CNTs modified film still retains good electrical conductivity (sheet resistance up to 6 × 104 Ω, light transmittance 69%) through the cleaning of surfactants and ultrasonic waves, which proves that hot pressing is a simple physical method to achieve effective combination of CNTs and films.
        4,000원
        1 2 3 4 5