We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30o to 60o in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.
Carbon fusion is important to understand the late stages in the evolution of a massive star. Astronomically interesting energy ranges for the 12C+12C reactions have been, however, poorly constrained by experiments. Theoretical studies on stellar evolution have relied on reaction rates that are extrapolated from those measured in higher energies. In this work, we update the carbon fusion reaction rates by fitting the astrophysical S-factor data obtained from direct measurements based on the Fowler, Caughlan, & Zimmerman (1975) formula. We examine the evolution of a 20M⊙ star with the updated 12C+12C reaction rates performing simulations with the MESA (Modules for Experiments for Stellar Astrophysics) code. Between 0.5 and 1 GK, the updated reaction rates are 0.35 to 0.5 times less than the rates suggested by Caughlan & Fowler (1988). The updated rates result in the increase of core temperature by about 7% and of the neutrino cooling by about a factor of three. Moreover, the carbon-burning lifetime is reduced by a factor of 2.7. The updated carbon fusion reaction rates lead to some changes in the details of the stellar evolution model, their impact seems relatively minor compared to other uncertain physical factors like convection, overshooting, rotation, and mass-loss history. The astrophysical S-factor measurements in lower energies have large errors below the Coulomb barrier. More precise measurements in lower energies for the carbon burning would be useful to improve our study and to understand the evolution of a massive star.
We have intended and preparation of hierarchically absorbent materials were covered with a NiMn2O4 and acts as a catalyst for azo dye degradation. The polyaromatic-based (PA) absorbent compounds were initially constructed by bromomethylated aromatic hydrocarbons which undergo self-polymerization in presence of ZnBr as a reagent and cross linker is bromomethyl methyl ether. The absorbent black materials with a 3D network were prepared by direct carbonization and activation of the as-prepared PA. The hydrothermal method was adapted for the preparation of carbon hybrid material C@NiMn2O4 powder's catalytic activity is effective in reducing p-nitrophenol to p-aminophenol and decolorizing carbon-based dyes like methyl orange (MO), methyl yellow (MY), and Congo red (CR) in aqueous media at 25 °C when NaBH4 is added. UV–visible spectroscopy was used to analyze the dyes' breakdown at regular interval.
Traditional culture contributes to the diversification of modern fashion design and the inheritance of local cultural identity. This study aims to identify the characteristics of traditional handicrafts reflected in modern fashion design in India. For this purpose, it focused on Sabyasachi Mukherjee, Manish Malhotra, and Ritu Kumar, who are currently leading the Indian fashion design field. The methodology involved conducting literature research and analyzing case studies. In the literature, the techniques of Indian traditional crafts such as embroidery, dyeing, and weaving were examined and five design elements of traditional crafts were defined. Through content analysis of 30 images from the three designers’ Instagram accounts, the design characteristics of traditional handicrafts expressed in contemporary Indian fashion design were derived: cultural inheritance using traditional Indian clothing items, traditional materials and practices applied to contemporary clothing, craftsmanship that artistically improves complex details using embroidery techniques, various combinations based on the traditional meaning of colors, and narrative expression using patterns containing India’s cultural identity. Incorporating these traditional handicrafts into fashion design, closely linked to everyday life, aids in conveying and enhancing their significance. The cases demonstrate the successful integration of conservation into contemporary fashion design. This study sheds light on the application of traditional culture in modern fashion design.
Scabies, caused by an infestation of the skin with the itch mite (Sarcoptes scabiei), is highly contagious and classified as a prevalent neglected tropical diseases. The current diagnostic approach relies solely on clinical judgment based on symptoms, history, and microscopic observation by an experienced dermatologist. To enhance sensitivity and specificity, we developed an alternative method based on mite-derived DNA. Our method involves a quick DNA release from skin scraping samples and Loop-Mediated Isothermal Amplification (LAMP) targeting the scabies mite-specific DNA sequences, enabling diagnosis within 30 minutes. Importantly, no cross-reactivity was observed when the sample was contaminated by two house dust mite species, and false positives were barely detected. Currently, we are in the process of developing a Point-of-Care Testing (POCT) kit for a scabies survey targeting school-age children in Timor-Leste as a global health project.
식물에 전기장을 처리하면 식물의 생장속도가 빨라지거나 영양학적으로 긍정적인 변화가 생긴다고 알려져 있다. 최근 음이온 처리 시 식물에 전기장을 처리한 것과 유사한 효과가 나타난다고 보고되었고 본 연구에서는 이러한 음이온을 온실해충인 점박이응애와 목화진딧물에 처리하여 방제효과 여부를 확인하였다. 그 결과 음이 온 처리 시 점박이응애와 목화진딧물에서 살충효과와 기피효과가 나타났다. 또한, 점박이응애 알에서도 음이온 처리가 부화율에 영향을 주는 것을 확인할 수 있었다. 이러한 시험 결과를 바탕으로 온실에서 밀도실험 결과, 700,000 ion/cm3 농도에서 무처리구에 비해 밀도가 감소함을 확인할 수 있었다. 따라서, 본 연구는 음이온 처리 시, 부가적인 효과로 온실해충(점박이응애, 목화진딧물)에 대해 친환경적 방제 가능성을 보여준다.
Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.
Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.
Synthesis of extremely competent materials is of great interest in addressing the energy storage concerns. Manganese oxide nanowires ( MnO2 NWs) are prepared in situ with multiwall carbon nanotubes (MWCNT) and graphene oxide (GO) using a simple and effective hydrothermal method. Powder XRD, Raman and XPS analysis are utilized to examine the structural characteristics and chemical state of composites. The initial specific discharge capacity of pure MnO2 NWs, MnO2 NWs/ MWCNT and MnO2 NWs/rGO composites are 1225, 1589 and 1685 mAh/g, respectively. The MnO2 NWs/MWCNT and MnO2 NWs/rGO composites showed stable behavior with a specific capacity of 957 and 1108 mAh/g, respectively, after 60 cycles. Moreover, MnO2 NWs/rGO composite sustained a specific capacity of 784 mAh/g, even after 250 cycles at a current density of 1 A/g showing outstanding cycling stability.
Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.
The primary therapeutic approach for Brucella species infections has mainly been based on antibiotic treatment. However, the development of vaccines for brucellosis control remains controversial. Furthermore, there is currently no licensed vaccine available for human brucellosis. This study aims to evaluate the effect of a combination of recombinant protein vaccines against Brucella (B.) abortus infection using a mouse model. Two B. abortus genes, namely dapB and gpm, were cloned and expressed in competent Escherichia (E.) coli DH5α using the pCold-TF vector. Successfully cloned vectors were subjected to PCR amplification using specific primer pairs. The apparent sizes of dapB and gpm were detected at 807 bp and 621 bp, respectively. Besides, the purified recombinant proteins dapB and gpm were detected using SDS-PAGE electrophoresis with correct sizes of 82.86 kDa and 87.61 kDa, respectively. These recombinant proteins were used to immunize mice as a combined subunit vaccine (CSV) to elicit host immunity against B. abortus infection. Mice immunized with CSV exhibited increased proliferation of CD4+ and/or CD8+ T cells at week 7th and 9th before sacrifice, in comparison to the control group. Notably, CSV immunization showed a significant decrease in bacterial burden in the spleen compared to the control group. Altogether, CSV using dapB and gpm induced host adaptive immune response against Brucella infection, suggesting its potential as an effective new subunit vaccine candidate.
Currently, non-volatile nuclides such as 94Nb, 99Tc, 90Sr, 55Fe, and 59/63Ni are used a sequential separation. In this study, we developed a separation for 99Tc and 90Sr by a carbonate precipitation. Sodium Carbonate (Na2CO3) was inserted in the aqueous sample from a Dry Active Waste (DAW) and a carbonate precipitation was produced. The precipitate is composed of di- or tri-valent element such as Co, Sr, Fe, Ni and the supernatant is composed of mono-valent element (Cs) and anion materials (ReO4 -, TcO4 -). In DAW, it was confirmed that the recovery of 90Sr (precipitate) and 99Tc (supernatant) were > 90%, respectively. The precipitate and supernatant separated by using a Sr-resin and an anion-exchange resin, respectively. The separated samples were measured by a Liquide Scintillation Counter (LSC, 90Sr) and Induced-Coupled Plasma-Mass Spectroscopy (ICPMS, 99Tc).