검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 67

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Foot-and-mouth disease (FMD), which affects cloven-hoofed animals, is economically important because of its highly contagious nature. FMD virus (FMDV), the causative agent of FMD, involves seven serotypes (O, A, Asia1, C, and SAT 1-3). Serotype Asia1 is unique to the Asian territory and is subdivided into nine genetic groups (G-I-IX) based on nucleotide variations in the VP1 sequence. Asia1 Shamir, the most representative Asia1 vaccine, is not highly protective against the Asia1/MOG/05 (G-V) lineage found in North Korea in 2007. Therefore, we investigated whether a chimeric virus strain (Asia1/MOG/Shamir), in which the VP4, VP2, and VP3 sequences of Asia1/MOG/05 were combined with the VP1 sequence of Asia1 Shamir, can simultaneously protect against both viruses. We determined the optimal viral growth conditions for the commercial utilization of this chimeric virus strain. Of the three types of cell culture media, the Cellvento medium resulted in the highest amount of antigen in the samples. The chimeric strain was proliferated in a small bioreactor to produce a test vaccine, and its immunogenicity was evaluated in pigs. The virus neutralization (VN) titer against the Asia1 Shamir virus was > 1/100 after the second immunization with the chimeric vaccine in pigs. In addition, a single dose of the test vaccine resulted in a VN titer of > 1/100 against the Asia1/MOG/05 strain. Taken together, our chimeric vaccine strain provided sufficient protection against the Asia1/MOG/05 and Asia1 Shamir viruses, suggesting its potential as a novel vaccine for both these strains.
        4,000원
        16.
        2018.10 구독 인증기관·개인회원 무료
        Insect peptides have been extensively studied due to beneficial effects in the treatment of infectious diseases. Melittin, a fundamental component of honeybee venom produced by European honeybee Apis mellifera, has applied to prevent various inflammatory disease and bacterial infections in human. However, the therapeutic application of melittin is limited due to its low stability, hemolytic activity and expensive manufacturing costs. In this study, we aimed to discovery unknown peptides from the Apis mellifera and evaluate its antibacterial activity against Escherichia coli KACC 10005. A total 15,853 peptide sequences were diciphered using Illumina HiSeq 2500 next-generation sequencing (NGS) platform and analyzed based on the Apis mellifera official Gene Set Version 3.2 (amel_OGSv3.2) and the Collection of Anti-Microbial Peptides (CAMPR3) database. All the peptide sequences and annotation data sets were combined and sorted by physicochemical features of antimicrobial peptides (AMPs), such as short peptide length <=50, positive charge, isoelectric point (8.0<=pl<=12), and aggregation propensity (in-vitro: <=500, in-vivo: –40<= Na4vSS <=60). Among the screened peptides, four unknown peptide candidates, named AMP1-4, were chemically synthesized and tested for antimicrobial activity in comparison with a reference peptide, melittin. Inhibition of bacterial growth was observed in the AMP4 treated group from 6 hours to 48 hours post-treatment against E. coli. These results suggest that honeybee-derived peptide sequences can be applied as natural resources to acquire novel AMPs and the peptide sequences derived parameters are enough to recognize antibacterial peptides. In addition, the selected novel peptide candidate, AMP4, has antibacterial activity.
        1 2 3 4