검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 633

        43.
        2022.10 구독 인증기관·개인회원 무료
        Important medical radionuclides for Positron Emission Tomography (PET) are producing using cyclotrons. There are about 1,200 PET cyclotrons operated in 95 countries based upon IAEA database (2020). Besides, including PET cyclotrons, demands for particle accelerators are continuously increasing. In Korea, about 40 PET cyclotrons are in operating phases (2020). Considering design lifetime (about 30-40 years) and actual operating duration (about 20-30 years) of cyclotrons, there will be demands for decommissioning cyclotron facilities in the near future. PET cyclotron produces radionuclides by irradiating accelerated charged particles to the targets. During this phase, nuclear reactions (18O(p,n)18F etc.) produce secondary neutrons which induce neutron activation of accelerator itself as well as surrounding infrastructures (the ancillary subsystems, peripheral equipment, concrete walls etc.). Generally, experienced cyclotron personnel prefer an unshielded cyclotron because of the repair and maintenance time. In unshielded cyclotron, water cooling systems, air compressor, and other equipment and structures could be existed for operating purposes. Almost all the equipment and structures are consisted of steel, and these affect neutron distribution in vault especially thermal neutron on the concrete wall. In addition, most of them can be classified as very low level radioactive wastes by Nuclear Safety and Security notice (NSSC Notice No. 2020-6). However, few studies were estimating radioactivity concentrations (Bq/g) of surrounding structures using mathematical calculation/simulation codes, and they were not evaluating the effect of surrounding structures on neutron distribution. In this study, by using computational neutron transport code (MCNP 6.2), and source term calculation code (FISPACT- II), we evaluated effect of the interaction between surrounding structures (including surrounding equipment) and secondary neutrons. Discrepancies of activation distribution on/in concrete wall will be occur depending on thickness of structure, distance between structures and walls, and consideration of interaction between structures and neutrons. Throughout this study, we could find that the influence of those structures can affect neutron distribution in concrete walls even if, thickness of the structure was small. For estimating activation distribution in unshielded cyclotron vault more precisely, not only considering cyclotron components and geometry of target, but also, considering surrounding structures will be much more helpful.
        44.
        2022.10 구독 인증기관·개인회원 무료
        With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
        45.
        2022.10 구독 인증기관·개인회원 무료
        Colloid migration is an important topic in post-closure safety assessment of radioactive waste repository as radionuclide can be adsorbed onto colloidal particles and migrated along with the colloids. This would reduce retardation of radionuclide migration, thus increasing the released concentration into biosphere. Recently, glass fiber waste has been found to contain small sized crushed glass fiber particles (GFPs), and concerns regarding the colloidal impact of GFP is being discussed. In this study, relevance of assessing GFPs facilitated radionuclide transport in the disposal environment of 1st phase disposal facility. Colloidal impact assessment can be divided into two sections, colloid mobility, and colloid sorption assessments. Considering GFP being denser than water, fluid velocity of 1st phase disposal facility is too slow to initiate movement of such dense particles. GFPs would remain settled, and no colloidal impact is expected. In this study, sorption assessment mainly focused to analyze the possible impact if migration of GFP does occur. The GFP is mainly composed of SiO2 and few other metal oxides. Due to high composition of SiO2 in the GFPs, negative surface charge is induced onto the surface of the GFPs in alkaline environment. This negatively charged surface can attract free positive ions (ex. Ni, Co, Fe, etc.) in the repository, and these ions would be adsorbed onto the surface of the GFPs via coulomb force. Thus, if GFPs migrate, colloid facilitated radionuclide transport can be expected. However, before being released into the biosphere, particles must pass through the engineered and natural barriers, where ion-colloid-rock interactions could result in transfer of radionuclide from one media to another. At Naka Research Center, Japan, ion-colloid-rock interactions are experimented with bentonite colloid, and the result showed that despite colloid’s sorption ability was 10 times higher than the barrier material, the overall released radionuclide concentration has negligible change. To reflect such phenomenon, coulomb attractive force of GFPs and concrete is calculated and compared, which the result showed that glass fiber was 10 times weaker than concrete. Considering the Japan’s experimental result, glass fiber facilitated transport would not enhance the radionuclide release into the biosphere. Nonetheless, assuming GFPs being mobile in 1st phase disposal facility, GFPs’ sorption ability is found to be negligible compared to the concrete of the repository, thus radionuclide transport is not expected to be enhanced. In future, this study could be used as basis for further colloidal impact analysis for the safety assessment of the repository.
        46.
        2022.10 구독 인증기관·개인회원 무료
        Despite the increasing interest in Deep Borehole Disposal (DBD) for its capability of minimizing disposal area, detailed research about DBD operation system design should be conducted before the DBD can be implemented. Recently, DBD operation system applying wireline emplacement (WE) technique is under study due to its high flexibility and capability of minimizing surface equipment. In this study, a conceptual WE system, and operation procdure is introduced. The conceptual WE system consists of 3 main stations, which from the top are hoisting station (HS), canister connection station (CCS) and basement (BS). In HS, WE is controlled and monitored. The WE is controlled using wireline drum winch and sheaves, and load on wireline is measured using a load cell. HS also has a pressure control system (PCS), which monitors internal pressure of the system, and a lubricator, which act as housing for joint device, allowing the joint device to be easily inserted into the borehole. The joint device is used to connect the disposal canister to wireline for emplacement/retrieval. In CCS, a rail transporter brings a transport cask containing disposal canisters, then the transport cask is connected to the hoisting system and a PCS in the BS. The main component located at canister station are a sliding shielding door (SSD), and a slip. The SSD is used to prevent canister from falling into borehole during the connecting operation and prevent radiation from BS to affect the workers. The slip is located beneath the SSD and is used to hold the disposal canister before it is lowered into the borehole. In BS, PCS is installed to prevent overflow and blowout of borehole fluid. The PCS consists of wireline pressure valve, christmas tree and BOP, which all are a type of pressure valve to seal the borehole and release pressure inside the borehole. The WE procedure starts with transporting transport cask to CCS. The transport cask is connected to lubricator, and PCS. Joint device is lowered down to be connected with disposal canisters, then pulled up to check the load on the wireline. After the check-up, SSD is opened, and disposal canister is lowered into the borehole. When desired depth is reached, joint device is disconnected and retrieved for next emplacement. In this study, the conceptual deep borehole disposal system design implementing WE technique is introduced. Based on this study, further detailed design could be derived in future, and feasibility could be tested.
        54.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the smooth implementation and success of smart city projects, it is necessary to recognize that there is a difference in the perception of value judgments or strategic goals among major stakeholders in the planning process. And it is necessary to aim the values and goals of smart cities through reconciliation of these differences. The two major stakeholders in the smart city development project are citizens group and government officials group. Government officials are in charge of establishing and implementing policies for smart city projects, and their value judgments and perceptions influence the policy direction. In these respects, government officials can be an important stakeholder group. Citizens are a group that includes ordinary residents and business owners who live in smart cities and are the ultimate users of infrastructure and facilities. This study investigated the importance perceptions of citizens and government officials, who are the major stakeholders, about the core values and strategic goals that the smart city project aims. Responses were collected using a structured questionnaire to which the AHP methodology was applied. And the priority of perceptions for constituent items was compared for each stakeholder group. Through the comparative analysis results, it was empirically confirmed that there is a difference in the values and goals pursued by the smart city project between stakeholder groups. As an empirical study on the stakeholders of the smart city project, this study is meaningful in contributing to the theoretical development in that it suggests that the conceptual structural model of the smart city strategy system presented in previous studies can be applied in practice.
        4,500원
        55.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We observed the symbiotic star AG Dra for a total of 61 nights between April 2004 and December 2021 using the 1.8-m telescope and the high-resolution Echelle spectrograph BOES at the Bohyunsan Optical Astronomy Observatory and obtained 355 frames of spectroscopic data to investigate the variations in its spectral lines. Overnight short-term and long-term changes in prominent emission lines are examined. No short-term changes are found in the line profiles. However, the peak intensity of the Hα emission line exhibits very small variation. In the long-term period, many emission lines including He I λ5875, λ6678, λ7065 and Fe II λ5018 are found to vary reflecting the symbiotic outburst activities. It is noted that He II λ4686 and Raman-scattered O VI λ6830, λ7088 are exceptions, where no significant variations are discernible. One of the noticeable lines is the λ5018 line. Its appearance and disappearance pattern are different from other emission lines, and the line is found to appear in outburst states. The Hα and Hβ lines remain very similar in our spectroscopic monitoring campaign.
        5,400원
        56.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Natural environmental resources are considered a prospective source of microorganisms capable of producing biocatalysts with great potential in industrial areas. Arable soil fertilized with peat moss is a habitat for various microorganisms. The present research focused on the isolation and identification of hydrolase-producing bacteria that thrive at a broad temperature range. In this study, a total of 33 strains were isolated from arable soil fertilized with peat moss (Silla Garden in Busan, South Korea). The isolated bacteria were mesophiles and thermophiles with a wide temperature range. Taxonomic identification showed that the isolated strains belonged to 2 phyla, 5 families, 10 genera, and 24 species. Subsequently, the isolated strains were screened for hydrolase (amylase, lipase, and protease) activity. All isolates possessed activity of at least one enzyme and six bacterial isolates produced combined extracellular enzymes. Diversity of soil bacteria species in the present study suggest the potential of soil bacteria in the various industrial applications.
        4,000원
        57.
        2022.05 구독 인증기관·개인회원 무료
        Once a radioactive material is released from the nuclear power plant (NPP) by accident, it is necessary to understand the behavior of radioactive plume to protect residents adequately. For this, it is essential to measure the radiation dose rate around NPPs at important locations. Our previous study developed a movable radiation detector that can be installed quickly in an accident to measure gamma dose rate in areas where environmental radiation monitoring system is not installed. The data measured by the detector are transmitted to the server in real-time through LoRA wireless communications. There are two methods to use LoRA communications; one is self-network, and the other is the network provided by the mobile carrier. A signal receiver, called a gateway, should be equipped near the installation location of radiation detectors to use a self-network without using the mobile carrier’s system. In other words, the movable radiation detectors we made can function if there should be any gateway near them. The distance capable of communication between gateway and detector is about 8 km in an open area without significant obstacles. Korea has many significant obstacles, such as mountains around most NPPs. Thus, the gateways could be installed in the proper position before the accident to operate the movable radiation detectors without problems. If the gateway is located at a high position like a mountain top, it could cover a wide area. In this study, the elevation database in the area around the NPPs was collected and analyzed to determine where gateways should be installed. The analysis range is limited in the urgent protective action planning zone. The optimization was also performed to minimize the number of gateways.
        58.
        2022.05 구독 인증기관·개인회원 무료
        For producing radionuclides which were mostly used in medical purposes, for instance, Positron Emission Tomography (PET), there were about 1,200 PET cyclotrons operated in 95 countries based upon IAEA database (2020). Besides, including PET cyclotrons, demands for particle accelerators are continuously increasing. In Korea, about 40 PET cyclotrons are in operating phases (2020). Considering design lifetime (about 30–40 years) of cyclotrons, there will be demands for decommissioning cyclotron facilities in the near future. PET cyclotron produces radionuclides by irradiating charged particles to the targets. During this phase, nuclear reactions (18O(p,n)18F, 14N(d,n)15O etc.) produce secondary neutrons which induce neutron activation of accelerator itself as well as surrounding infrastructures (the ancillary subsystems, peripheral equipment, concrete walls etc.). Most of the ancillary systems including peripheral equipment can be neutron activated, since, most of them were made of steels. Steels like stainless steel or carbon steel may contain some impurities, typically cobalt. Although, there were several researches evaluating activation of concrete walls and accelerator components, estimating the activation and influence on neutron interaction of the other surrounding infrastructures were insufficient. In this study, by using computational neutron transport code (MCNP 6.2), and source term calculation code (FISPACT- II), we estimated neutron distribution in cyclotron vault and activation of ancillary subsystems including some peripheral equipment. Also, using Au foil and Cd cover, we measured thermal neutron distribution at 16 points on the concrete wall, and compared it to calculated results (MCNP). Even though, the compared results matches well, there was a discrepancy of neutron distributions between presence and absence of those equipment. Additionally, in estimating activation distributions by calculating, most of the steel-based subsystems including peripheral equipment should be managed by radioactive wastes after 20 years of operation. Throughout this study, we could find that influence on neutron interaction of those equipment can affect neutron distribution in concrete walls. This results vary the activation depth as well as location of the hot contaminated spot in concrete wall. For estimating or evaluating activation distributions in cyclotron facilities, there was need to consider some equipment located in cyclotron vault.
        59.
        2022.05 구독 인증기관·개인회원 무료
        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Thus, evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, safety assessments conducted in Sweden and UK are studied, and the factors required to be considered for appropriate safety assessment of cellulose is analyzed. SKB (Sweden) conducted safety assessment of cellulose degradation as a part of long-term safety assessment of SFR. SKB determined that ISA would impact sorption of trivalent and tetravalent radionuclides (Eu, Am, Th, Np, Pa, Pu, U, Tc, Zr and Nb) at concentration higher than 10−4–10−3 M, and impact sorption of divalent radionuclides (Ni, Co, Fe, Be and Pb) at concentration higher than 10−2 M. Then, SKB conservatively set the upper limit of ISA concentration to be 10−4 M and conducted cellulose degradation evaluation on each waste package type, considering the expected disposal environment of SFR. Based on the calculated results, some of the waste packages showed concentration of ISA to be higher than 10−4 M, so SKB conservatively developed waste acceptance criteria to prevent ISA being produced to an extent of affecting the safety of the repository. SKB conducted safety assessment only for the repositories with pH above 12.5 and excluded 1BLA from the safety assessment as the expected pH of 1BLA is around 12, which is insufficient for cellulose to degrade. However, SKB set disposal limit for 1BLA as well, to minimize potential impact in future. Serco (UK) conducted safety assessment of cellulose degradation for the conceptual repository, which is a concrete vault with cementitious backfill. Serco estimated that the pH of repository would maintain around 12.4. Serco conservatively assumed that the pH would be sufficient for cellulose degradation to occur partially, and suggested application of appropriate degradation ratio for safety assessment of cellulose degradation. To conduct appropriate safety assessment of cellulose degradation, an appropriate ISA concentration limit based on radionuclide inventory list, and an appropriate cellulose degradation ratio based on the pH of disposal environment should be determined. As for guidance, below pH 12.5, cellulose degradation is not expected, and between pH 12.5–13, partial cellulose degradation is expected. In future, this study could be used as fundamental data to evaluate safety of the repository.
        60.
        2022.05 구독 인증기관·개인회원 무료
        Near-surface disposal facility is more susceptible to intrusion than underground repository, resulting in more possible pathways for contaminant release. Alike human intrusion, animals (e.g. Ants, Moles, etc.) could intrude into the disposal site to excavate burrows, which could cause direct release of contaminants to biosphere. In this paper, animal intrusion is demonstrated using GoldSim’s commercial contaminant transport module and impact on the integrity of the near-surface disposal facility is evaluated in terms of fractional release rate of the contaminants. In this study, the near-surface disposal facility is modelled with a single concrete vault to contain radionuclide according to LLW concentration limit stated in NSSC notice No.2020-6. The release of contaminants is modelled to occur directly after the institutional control period, and the contaminants are mostly transported from the concrete vault to cover layers via diffusion. To produce mathematical model of the release of the contaminants due to animal intrusion, firstly, the fraction of burrow volume for each cover layer is calculated separately for each animal species, based on their maximum possible intrusion depth. In this study, fractions of burrow volume for ants and moles are calculated based on their maximum possible intrusion depths, where for ants is 2–3 m, and for moles is 0.1–0.135 m. Then, assuming that the contaminants are distributed homogeneously throughout each cover layers by diffusion, fraction of contaminants transported into the uppermost layer via excavation of the burrow is calculated for each layer based on burrow volume, and fraction of contaminants removed from the uppermost layer to the layers below via collapse of the burrow is also calculated based on the burrow volume. Lastly, the net transportation of contaminants into and out of the burrow via excavation and collapse, respectively, is calculated and demonstrated using direct transfer rate function of the GoldSim. Based on the simulated result, the maximum mass flux is too minor to cause a meaningful impact on the safety. The peak mass flux of the most sensitive radionuclide, I-129, is witnessed at around year 1,470, with a flux value of 5.36×10−6 g·yr−1. This minor release of the contaminants could be due to cover layers being much thicker than the maximum possible intrusion depth of the animals, preventing the animal intrusion into the deeper layers of higher radionuclide concentration. In future, this study can be used to provide a guidance and fundamental data for scenario development and safety evaluation of the near-surface disposal facility.
        1 2 3 4 5