검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,096

        22.
        2023.11 구독 인증기관·개인회원 무료
        Bis (2-ethylhexyl)phosphoric acid (HDEHP) is a renowned extractant, favored for its affinity to selectively remove uranium via its P=O groups. We previously synthesized HDEHP-functionalized mesoporous silica microspheres for solid-phase uranium adsorption. Herein, we investigated the kinetic and isothermal behavior of uranyl ion adsorption in mesoporous silica microspheres functionalized with phosphate groups. Adsorption experiments were conducted by equilibrating 20 mg of silica samples with 50 mL of uranium solutions, with concentrations ranging from 10 to 100 mgU L−1 for isotherms and 100 mgU L−1 for kinetics. Three distinct samples were prepared with varying HDEHP to TEOS molar ratios (x = 0.16 and 0.24) and underwent hydrothermal treatment at different temperatures, resulting in distinct textural properties. Contact times spanned from 1 to 120 hours. For x = 0.16 samples, it took around 50 and 11 hours to reach equilibrium for the hydrothermally treated samples at 343 K and 373 K, respectively. Adsorbed quantities were similar (99 and 101 mg g-1, respectively), indicating consistent functional group content. This suggests that the key factor influencing uranium adsorption kinetics is pore size of the silica. The sample treated at 373 K, with a larger pore size (22.7 nm) compared to 343 K (11.5 nm), experienced less steric hindrance, allowing uranium species to diffuse more easily through the mesopores. The data confirmed the excellent fit of pseudo-second-order kinetic model (R2 > 0.999) and closely matched the experimental value, suggesting that chemisorption governs the rate-controlling step. To gain further insights into uranium adsorption behavior, we conducted an adsorption isotherm analysis at various initial concentrations under a constant pH of 4. Both the Langmuir and Freundlich isotherm models were applied, with the Langmuir model providing a superior fit. The relatively high R2 value indicated its effectiveness in describing the adsorption process, suggesting homogenous sorbate adsorption on an energetically uniform adsorbent surface via a monolayer adsorption and constant adsorption site density, without any interaction between adsorbates on adjacent sites. Remarkably, differences in surface area did not significantly impact uranium removal efficiency. This observation strongly suggests that the adsorption capacity is primarily governed by the loading amount of HDEHP and the inner-sphere complexation with the phosphoryl group (O=P). Our silica composite exhibited an impressive adsorption capacity of 133 mg g-1, surpassing the results reported in the majority of other silica literature.
        23.
        2023.11 구독 인증기관·개인회원 무료
        Radiation workers, especially those dealing with Uranium isotopes, can potentially intake Uranium -containing materials through their respiratory and digestive systems. According to the “Regulations on the Measurement and Calculation of Internal Exposure” from Nuclear Safety and Security Commission (NSSC), those who intend to work in or enter the nuclear facilities with a risk of exceeding 2 mSv exposure per year should be examined the internal exposure. However, when it comes to in-vitro bioassay, Uranium intake through drinking water can affect the quantitative analysis. The International Commission on Radiological Protection (ICRP) reported in ICRP Publication 23 (Report on the Task Group on Reference Man) that the reference man excretes Uranium in the urine (0.05-0.5 μg/day) and feces (1.4-1.8 μg/day). Korea Atomic Energy Research Institute (KAERI) set the 90.5 ng/day as the 238U background of workers handing Uranium based on the daily Uranium intake of Koreans. In this research, we examined the possible effects of Uranium in drinking water on internal exposure by analyzing the concentration of Uranium in bottled waters from various water sources sold in the domestic market and a water from the water purifier. The 238U concentration results of analyzing 11 bottled waters and 1 purified water, were ranged from 0 to 10.2 μg/L. All the results were satisfied the standard of 30 μg/L according to “Regulations for Drinking Water Quality Standards and Inspection” enacted by the Ministry of Environment. However, various concentrations were shown depending on the water sources. Assuming that these concentrations of water are consumed by drinking 1 L per day, the internal dose assessment result is 0 to 0.94 mSv. On the other hand, if it is assumed to be inhaled, it can be an overestimated because the dose coefficient of inhalation, Type M is higher than that of ingestion, f1=0.02 which are the values recommended by ICRP Publication 78 (Individual Monitoring for Internal Exposure of Workers) when the Uranium compound is unspecified. In case of two workers at KAERI, the daily excretion of urine was 151 and 120 ng/day respectively in the first quarter monitoring. However after changing the kind of drinking water in the second quarter monitoring, it dropped to 17.4 and 15.4 ng/day respectively. Through this study, it is confirmed that the Uranium background in urine can be analyzed differently depending on the kind of drinking water consumed by each worker. Depending on the Uranium concentration of drinking water, the internal exposure dose assessment can be overestimated or underestimated. Therefore, the Uranium concentration and intake amount according to the kind of drinking water should be considered for in-vitro bioassays of Uranium handlers. Furthermore, if necessary, the Uranium isotope ratio analysis in urine and the handling information should be comprehensively considered. In addition, in order to exclude the effect of intake through the digestive system, replacing the kind of drinking water can be considered. The additional analysis such as in-vivo bioassay and 24 hours urine analysis rather than spot samples can be also recommended.
        24.
        2023.11 구독 인증기관·개인회원 무료
        As unit 1 of Kori was permanently shut down in June 2017, domestic nuclear industry has entered the path of decommissioning. The most important thing in decommissioning is cost reduction. And volume reduction of radioactive waste is especially important. According to the IAEA report, more than 4,000 tons of metallic waste is generated during the decommissioning of a 1,000 MWe reactor and most of these wastes are LLW or VLLW. To reduce amount of metallic waste dramatically, we should choose efficient decontamination method. In this study, we conducted dry ice and bead blasting decontamination. We prepared Inconel-600 and STS-304 specimen with dimensions of 30 mm × 30 mm × 5 mm. Loose and fixed contamination was applied on the surface of specimen using SIMCON method. Bead and dry-ice blasting was conducted by spraying alumina and dry ice pellet at the same pressure and distance for the same time. The removal of loose contamination was observed using microscope. It was found that contaminants are significantly removed using both dry ice blasting and bead blasting. However, some abrasive material remained on the surface of specimen. The removal of fixed contamination was verified by weight comparison before and after experiment and cobalt concentration comparison before and after experiment using X-ray Fluorescence Spectroscope (XRF). At least 90% of the cobalt was removed, but some abrasive particle was also remained on the surface of specimen. In this study, it is confirmed that the effectiveness of manufacturing a large-scale abrasive decontamination facility, and it is expected that this technology can be used to effectively reduce the amount of metallic waste generated during decommissioning.
        25.
        2023.11 구독 인증기관·개인회원 무료
        As the acceptance criteria for low-intermediate-level radioactive waste cave disposal facilities of Korea Radioactive Waste Agency (KORAD) were revised, the requirements for characterization of whether radioactive waste contains hazardous substances have been strengthened. In addition, As the recent the Nuclear Safety and Security Commission Notice (Regulations on Delivery of Low- Medium-Level Radioactive Waste) scheduled to be revised, the management targets and standards for hazardous substances are scheduled to be specified and detailed. Accordingly, the Korea Atomic Energy Research Institute (KAERI) needs to prepare management methods and procedures for hazardous substances. In particular, in order to characterize the chemical requirements (explosiveness, ignitability, flammability, corrosiveness, and toxicity) contained in radioactive waste, it must be proven through documents or data that each item does not contain hazardous substances, and quality assurance for the overall process must be provided. In order to identify the characteristics of radioactive waste that will continue to be generated in the future, KAERI needs to introduce a management system for hazardous substances in radioactive waste and establish a quality assurance system. Currently, KAERI is thoroughly managing chelates (EDTA, NTA, etc.), but the detailed management procedures for hazardous substances related to chemical requirements in radioactive waste in the radiation management area specified above are insufficient. The KAERI’s Laboratory Safety Information Network has a total periodic regulatory review system in place for the purchase, movement, and disposal of chemical substances for each facility. However, there is no documents or data to prove that the hazardous substances held in the facility are not included in the radioactive waste, and there are no procedures for managing hazardous substances. Therefore, it is necessary to establish procedures for the management of hazardous substances, and we plan to prepare management procedures for hazardous substances so that chemical substances can be managed according to the procedures at each facility during preliminary inspection before receiving radioactive waste. The procedure provides definitions of terms and types of management targets for each characteristic of the chemical requirements specified above (explosiveness, ignition, flammability, corrosiveness, and toxicity). In addition, procedure also contains treatment methods of radioactive waste generated by using hazardous substances and management methods of in/out, quantity, history of that substances, etc. As the law is revised in the future, management will be carried out according to the relevant procedures. In this study, we aim to present the hazardous substance management procedures being established to determine whether radioactive waste contains hazardous substances in accordance with the revised the notice and strengthened acceptance criteria. Through this, we hope to contribute to improving reliability so that radioactive waste could be disposed of thoroughly and safely.
        26.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        27.
        2023.11 구독 인증기관·개인회원 무료
        Engineered Barrier Systems (EBS) are a key element of deep geological repositories (DGR) and play an important role in safely isolating radioactive materials from the ecosystem. In the environment of a DGR, gases can be generated due to several factors, including canister corrosion. If the gas production rate exceeds the diffusion rate, pore pressures may increase, potentially inducing structural deterioration that impairs the function of the buffer material. Therefore, understanding the hydraulic-mechanical behavior of EBS due to gas generation is essential for evaluating the longterm stability of DGR. This study employed X-ray computed tomography (CT) technology to observe cracks created inside the buffer material after laboratory-scale gas injection experiments. After CT scanning, we identified cracks more clearly using an image analysis method based on machine learning techniques, enabling us to examine internal crack patterns caused by gas injection. In the samples observed in this study, no cracks were observed penetrating the entire buffer block, and it was confirmed that most cracks were created through the radial surface of the block. This is similar to the results observed in the LASGIT field experiment in which the paths of the gas migration were observed through the interface between the container and the buffer material. This study confirmed the applicability of high-resolution X-ray CT imaging and image analysis techniques for qualitative analysis of internal crack patterns and cracks generated by gas breakthrough phenomena. This is expected to be used as basic data and crack analysis techniques in future research to understand gas migration in the buffer material.
        28.
        2023.11 구독 인증기관·개인회원 무료
        The buffer is installed around the disposal canister, subjected to heating due to decay heat while simultaneously experiencing expansion influenced by groundwater inflow from the surrounding rock. The engineering barrier system for deep geological disposal require the evaluation of longterm evolution based on the verification of individual component performance and the interactions among components within the disposal environment. Thus, it is crucial to identify the thermalhydro- mechanical-chemical (THMC) processes of the buffer and assess its long- and short-term stability based on these interactions. Therefore, we conducted experimental evaluations of saturationswelling, dry heating, gas transport, and mineralogical alterations that the buffer may undergo in the heated-hydration environment. We simulated a 310 mm-thick buffer material in a cylindrical form, simulating the domestic disposal system concept of KRS+ (the improved KAERI reference disposal system for spent nuclear fuel), and subjected it to the disposal environment using heating cartridges and a hydration system. To monitor the thermal-hydro-mechanical behavior within the buffer material, load cells were installed in the hydration section, and both of thermal couples and relative humidity sensors were placed at regular intervals from the heat source. After 140 days of heating and hydration, we dismantled the experimental cell and conducted post-mortem analyses of the samples. In this post-mortem analysis, we performed functions of distance from the water contents, heat source, wet density, dry density, saturation, and X-Ray diffraction analysis (XRD). The results showed that after 140 days in the heated-hydration environment, the samples exhibited a significant decrease water contents and saturation near the heat source, along with very low wet and dry densities. XRD Quantitative Analysis did not indicate mineralogical changes. The findings from this study are expected to be useful for input parameters and THMC interaction assessments for the long-term stability evaluation of buffer in deep geological disposal.
        29.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        30.
        2023.11 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS), composed of spent nuclear fuel, canister, buffer and backfill material, and near-field rock, plays a crucial role in the deep geological repository for high-level radioactive waste. Understanding the interactions between components in a thermo-hydro-mechanical -chemical (THMC) environment is necessary for ensuring the long-term performance of a disposal facility. Alongside the research project at KAERI, a comprehensive experimental facility has been established to elucidate the comprehensive performance of EBS components. The EBS performance demonstration laboratory, which installed in a 1,000 m2, consists of nine experimental modules pertaining to rock mechanics, gas migration, THMC characteristics, buffer-rock interaction, buffer & backfill development, canister corrosion, canister welding, canister performance, and structure monitoring & diagnostics. This facility is still conducting research on the engineering properties and complex interactions of EBS components under coupled THMC condition. It is expected to serve as an important laboratory for the development of the key technologies for assessing the long-term stability of engineered barriers
        33.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of food packaging materials with mechanical and antimicrobial properties is still a major challenge. N, P-doped carbons (NPCs) were synthesized. Poly(butylene adipate-co-terephthalate) (PBAT), which has an adverse effect on the environment and affects petroleum resources, has been commonly used for applications as food packaging. The development of PBAT composites reinforced with NPCs and studies on their structure and antimicrobial properties are presented in this study. The composite materials in the PBAT/NPCs were processed by solution casting. The plasticizing properties of NPCs enhanced the mechanical strength of composites produced of PBAT and NPCs. The thermal properties of PBAT composites were enhanced with addition of NPCs, according to thermogravimetric analysis (TGA). After reinforcement, PBAT/NPCs composites became more hydrophobic, according to contact angle measurements. In studies against S. aureus and E. coli food-borne pathogenic bacteria, the obtained composites show noticeably improved antimicrobial activity. The composite materials, according to the results of PBAT and NPCs may be a good choice for packing for food that prevents microorganisms.
        4,000원
        34.
        2023.10 구독 인증기관·개인회원 무료
        2022년부터 2023년까지 제주도내 키위 시설재배지를 대상으로 계절 초기 볼록총채벌레 발생 경향을 확인하 기 위해서 토양 표면의 잡초, 토양 표면 상단으로부터 60cm, 키위나무를 유인한 덕 상단 15cm에서 10일 간격으로 발생 조사하였다. 하우스 내부에서 발생하는 잡초 10종을 채집하여 조사한 결과, 갈퀴덩굴, 광대나물, 개불알풀, 별꽃, 뽀리뱅이, 황새냉이 6종에서 볼록총채벌레가 지속적으로 관찰되었다. 계절 초기 월동 성충의 비산시기를 확인하기 위해 토양 표면 60cm 위쪽에 설치한 황색 끈끈이트랩에서 2월 하순~3월 중순부터 볼록총채벌레의 발생을 확인하였다. 시설하우스 내부(덕 상단 15cm)와 외부(측장 높이)에 설치한 황색 끈끈이트랩을 비교해보면 시설 내·외부의 볼록총채벌레의 밀도가 증가하고 감소하는 시기가 유사하였다. 종합적인 고찰을 통하여, 발생 양상을 고려한 적절한 방제전략 수립이 요구된다.
        35.
        2023.10 구독 인증기관·개인회원 무료
        두점박이사슴벌레는 2012년 5월 31일부터 환경부 지정 멸종위기야생생물 2급으로 보호받고 있는 딱정벌레 목의 사슴벌레과 톱사슴벌레속의 곤충으로 우리나라에는 제주도 숲에서 자생하고 있다. 보통 검정색 사슴벌레 와는 달리 황갈색의 이국적인 색상을 지니고 있으며, 가슴 양쪽에 2개의 검은색 점이 있는 것이 특징이다. 본 연구는 아열대기후의 특정 서식지에서만 살아가는 두점박이사슴벌레의 산업곤충으로써 가치성과 희귀성을 고려하여 인공증식 사육기술을 개발하였으며, 이 과정 중 점차적으로 온도를 낮춰가며 영상 8℃에서 90일간의 월동처리 하였고, 이러한 월동처리의 유무과정이 두점박이사슴벌레 유충기의 생육에 어떠한 영향을 미치는지 조사하였다. 비월동시 수컷 249일, 암컷 239일이었고, 성별간 수컷이 암컷보다 약 10일정도 더 길었으며, 암수 평균 유충기간은 245일이었다. 그리고 월동시에는 수컷 309일, 암컷 280일로 수컷이 약 30일정도 길었으며, 암수 평균 유충기간은 290일이었다. 월동처리 유무에 따른 두점박이사슴벌레 유충기간의 차이는 비월동 개체가 월동 개체보다 수컷은 약 60일, 암컷은 약 40일정도 짧았으며, 암수 평균 유충기간은 약 45일정도 짧았던 경향을 보였 다. 또한 유충의 생육특성 중 두폭은 처리간 서로 유사하였던 반면, 암수 무게는 월동 개체가 비월동 개체보다 모두 높게 나타났다. 우화의 경우 암컷이 비월동과 월동 개체에서 모두 수컷보다 빨랐던 경향을 보였다. 추후에는 월동 유무에 따른 성충 산란량과 사육 키트 개발을 위한 사육상자 크기 및 배지 높이별 성충 산란량, 온도 및 사육상 자 크기별 유충 생육 등의 연구를 추진할 계획이다.
        36.
        2023.10 구독 인증기관·개인회원 무료
        In the genus Asobara Foester, 1863 (Braconidae: Alysiinae), two new species, Asobara rotundata sp. nov. is described and illustrated. In addition, the DNA barcode region of the mitochondrial cytochrome c oxidase subunit I (COI) were sequenced for the species. An identification key for the Asobara species officially recorded from Korea is provided.
        37.
        2023.10 구독 인증기관·개인회원 무료
        The fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), which is native to tropical and subtropical regions of the Western Hemisphere is now annually arrives in Korea. In this study, we developed loop-mediated isothermal amplification (LAMP) assay, one of the main merits of which is a rapid identification of target species. Five among 11 FAW-specific loci tested successfully provided a consistent reaction when ten FAWs, which were collected from eight localities in four countries were tested, whereas the 13 non-target species were not amplified. To increase in-field applicability of the method all life stages, reaction time, and different periods after death was tested using the quick extracted DNA. Our FAW diagnostic protocol can be completed within 30 min, from the process of extracting genomic DNA from an egg or a 1st instar larva to species determination.
        38.
        2023.10 구독 인증기관·개인회원 무료
        Bombyx mandarina (Lepidoptera: Bombycidae), the presumed ancestor of B. mori, has long been a subject of study to illustrate the geographic relationships in connection with origin of B. mori. We report 97 mitochondrial genome (mitogenome) sequences of B. mandarina collected from Korea and Japan. Phylogenetic and population genetic analyses showed that all individuals of B. mandarina collected in Korean localities formed a strong group together with all individuals originated from northern China (mainly north of the Qinling-Huaihe line) and some of southern China. This group was placed as the sister group to B. mori strians suggesting that this group had been served as an immediate progenitor for B. mori.
        39.
        2023.10 구독 인증기관·개인회원 무료
        본 연구에서는 영종도에 위치한 인천과학고등학교 주변에 서식하는 개미와 개미집 근권토양을 두 차례에 걸쳐 채취한 것을 활용하여 토양미생물 순수분리 및 동정을 진행하였다. 채취된 개미의 더듬이의 모양, 털의 위치 및 분포 등의 형태학적 동정 및 DNA extraction을 통한 분자생물학적 동정을 통하여 채취한 개미를 Camponotus japonicus으로 결론하였다. 토양미생물을 연속희석법을 이용하여 확인한 결과 채취한 개미집 세 곳에서 각각 12, 18, 10개의 종이 동정되었다. 개미집 근권토양의 비옥도가 상대적으로 높다는 선행연구를 바탕 으로 ‘분리한 토양미생물이 다양한 유기물 분해 효소활성을 보일 것’이라는 가설을 세웠고, 이를 확인하기 위해 분별배지를 제작하여 디스크 확산법을 진행하였다. 실험 결과 개미집 근권 토양에서 분리된 균주가 일반 토양에 서 분리된 균주에 비해 높은 효소활성을 보임을 확인하였으며 개미집 근권 토양 미생물의 불용성인산 가용화능 이 우수함을 확인하였다. 이후 위 실험들을 바탕으로 개미집 근권 토양 미생물이 식물 생장을 촉진시켜 미생물을 접종한 토양에서의 식물의 건조 질량이 증가하였음을 확인하였다.
        40.
        2023.10 구독 인증기관·개인회원 무료
        Immune priming is an increased immunity after prior exposure to a specific pathogen as a kind of adaptive immunity and occurs in insects. However, its underlying mechanism is elusive in insects. Immune priming was detected in a lepidopteran insect, Spodoptera exigua. Prior infection with a heat-killed pathogenic bacterium, Xenorhabdus hominickii, increased survival upon the second infection of the live bacteria compared to larvae without pre-exposure. Plasma collected from larvae with the prior infection significantly up-regulated cellular and humoral immune responses compared to the similar treatment without prior exposure. However, when the active plasma exhibiting immune priming was heat-treated, it lost the priming activity, suggesting a presence of protein factor(s) in the immune priming. Lipocalin is a lipid carrier protein and is well known in vertebrates for diverse physiological functions including immunity. An apolipoprotein D3 (ApoD3) is known to be a lipocalin functioning in immune priming in a mosquito, Anopheles gambiae. A homologous ApoD3 (Se-ApoD3) was identified in S. exigua. Se-ApoD3 was expressed in all developmental stages and larvae, it was highly expressed in hemocytes. RNA interference (RNAi) of Se-ApoD3 expression was performed by injecting its specific dsRNA. The larvae treated with the RNAi were impaired in cellular and humoral immune responses. Furthermore, the plasma collected from RNAi-treated larvae lost the immune priming even at the prior exposure. These suggest that Se-ApoD3 mediates the immune priming in S. exigua.
        1 2 3 4 5