본 연구는 절화 국화의 수경재배와 토경관비재배 시 생육 특 성을 비교하기 위하여 실시하였다. 그 결과 초장, 절화의 생체중 과 건물중은 토경관비재배에서 증가하였다. 식물체 내 전질소, 칼륨 및 칼슘의 함량도 토경관비재배에서 더 높았다. 반면에 줄기 직경은 수경재배에서 3.7mm로 증가하였다. 또한 개화소 요일수도 토경관비재배보다 수경재배에서 3일 정도 단축되었 고, 줄기 1개당 꽃 수도 19.6개로 수경재배에서 더 많았다. 결과 적으로 토경관비재배에서 식물체 내 무기염류 함량이 높고, 초장이 길어지고 생체중, 건물중이 증가하였지만 수경재배보다 개화기는 지연되었다. 또한 토경관비재배보다 수경재배에서 줄 기 직경이나 꽃 수 등이 증가하였다. 따라서 재배자의 입장에서 국화 수경재배를 통해 양분과 수분 공급량의 조절에 의한 개화 기의 조절, 조기 개화 및 절화 품질 향상 등의 효과를 기대할 수 있을 것으로 판단된다.
Inflammatory bowel disease (IBD) is a chronic condition characterized by continuous inflammation of the gastrointestinal tract that varies in intensity over time. IBD is caused by several factors including aberrant gut flora, immunological dysregulation, altered environmental conditions, and genetic variations. However, the pathogenesis of IBD remains unclear. Studies have indicated that an imbalance between T helper 17 (Th17) and regulatory T (Treg) cells contributes significantly to the development of IBD. Intestinal Tregs suppress inflammation and are critical for maintaining tissue homeostasis. Th17 cells are known to play an important role in the development and pathogenesis of IBD and provide non-inflammatory support for the integrity of the intestinal barrier against bacterial and fungal infections. Therefore, the Th17/Treg cell balance is crucial in the pathogenesis of IBD and gut integrity. The microenvironment of the intestinal mucosal immunity is regulated by the secretion of cytokines associated with Th17 cells and Tregs. Several studies have indicated that the gut bacteria contribute to the control of the immune milieu and play a key role in the regulation of Th17 cell development. Intestinal bacteria and cytokines control Th17 cell development. Th17 cells secrete cytokines that regulate the immune microenvironment in the gut mucosa. This review provides an overview of Th17 cells and examines the strategies for treating patients with IBD using Th17 cell-targeted drugs.
Korean historical literatures offer numerous records on astronomical phenomena such as eclipses, comets, and close approaches, etc. Records of close approaches often use specific terms to describe the angular distance, which lack translation into modern numerical values. We study the usage of the five commonly used terms, namely, Entry (入, En), Invasion (犯, In), Occultation (掩, Oc), Eclipse (食, Ec), as well as the unit Chi (尺). Our analysis is based on more than 2,300 records from Goryeo (918–1392 CE) and Joseon (1392–1910 CE) Dynasties. Through statistical analysis, we determine their quantitative definitions. We convert the lunisolar calendar to the Julian and Gregorian date and utilize the modern ephemeris DE431 to calculate the angular distance between celestial bodies. We find that the angular distances of the terms En, In, Oc, and Ec correspond to respectively 1.78◦+2.36 −1.11, 0.89◦+3.54 −0.51, 0.44◦+1.15 −0.31, and 0.29◦+2.61 −0.16 for the Goryeo Dynasty and 1.36◦+1.15 −0.64, 0.51◦+1.11 −0.32, 0.25◦+0.27 −0.17, and 0.21◦+0.25 −0.11 for the Joseon Dynasty. Additionally, we determine the angular size of the unit Chi by using the records from Korean chronicles along with the drawings of comets’ tails in the Daily Log (天變謄錄). We estimate the unit Chi to be 1.11◦+0.46 −0.40 and find that the numerical definition was consistent throughout the two dynasties in Korea. Furthermore, we find that the terms were used to describe the closest approach and that there is no observational bias in the angular distances against the apparent magnitudes of the objects. We show that the terms En, In, Oc, and Ec represent decreasing angular distance in that order and this ordering was consistent in both dynasties.
Pitfall traps that use ethylene glycol as a preservative solution are commonly used in arthropod research. However, a recent surge in cases involving damage to these traps by roe deer or wild boars owing to the sweet taste of ethylene glycol has prompted the addition of quinone sulfate, a substance with a pungent taste, to deter such wildlife interference. This study aimed to assess the effects of quinone sulfate on arthropods collected from pitfall traps containing ethylene glycol. We strategically positioned 50 traps using ethylene glycol alone and 50 traps containing a small amount of quinone sulfate mixed with ethylene glycol in a grid pattern for systematic sampling at the Gwangneung Forest long-term ecological research (LTER) site. Traps were collected 10 days later. The results revealed a notable effect on ants when quinone sulfate was introduced. Specifically, it decreased the number of ants. In a species-specific analysis of ants, only Nylanderia flavipes showed a significant decline in response to quinone sulfate, whereas other ant species remained unaffected. Additionally, among the arthropod samples obtained in this survey, we identified species or morpho-species of spiders, beetles, and ants and assessed species diversity. Consequently, the utilization of quinone sulfate should be undertaken judiciously, taking into account the specific species composition and environmental characteristics of the monitoring site. Our study also highlighted the significant response of various arthropod groups to variations in leaf litter depth, underscoring the crucial role of the leaf litter layer in providing sustenance and shelter for ground-foraging arthropods. Furthermore, we have compiled comprehensive species lists of both spiders and ants in Gwangneung forest by amalgamating data from this investigation with findings from previous studies.
현대 사회에서 첨단 기술의 발전은 예술의 양상을 빠르게 변화시키고 있다. 생성형 인공지능 기술의 발전은 인류의 전유물이라 여겨왔던 창작 행위에 기존에는 보지 못했던 색다른 표현을 제공했다. 또한, 전통적 기법 을 고수하던 예술인들에게 새로운 예술 창작의 발현 방식을 제시하였다. 하지만 나날이 발전하는 인공지능 기술에 비해, 이를 활용한 구체적인 미디어아트 제작 과정 연구는 아직 국내에서는 미비하다. 본 논문은 인 공지능 기술을 활용한 미디어아트 해외 사례를 탐구한다. 그리고 Text-to-Image 인공지능 생성 모델과 게임 엔진 Unreal Engine 5를 이용하여, 국내에 자리 잡지 않은 생성형 인공지능을 활용한 작품 제작 방법론과 창 작자들에게 인공지능 이미지 생성 모델의 확장성을 제시한다.
Chelating agents like ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and nitrilotriacetic acid (NTA) find extensive application in the removal of residual substances due to their high stability constants with a wide range of metal ions. They also play a crucial role in nuclear decontamination operations aimed at eliminating metallic radionuclides such as 60Co, 90Sr, and 239Pu. However, improper disposal of chelated radioactive waste can lead to significant increases in radionuclide migration rates from disposal sites. Therefore, it is imperative to comprehend the behavior of chelating agents under varying conditions, including pH, temperature, and metal ion concentrations. In this study, we present the results of a pH-dependent composition analysis of nickel-chelate complexes using UV-Vis spectrophotometry. Nickel (Ni) serves as an ideal metal ion for investigating its interactions with chelating agents due to its solubility over a wide pH range and high stability constants with all three chelating agents mentioned earlier. Initially, UV-Vis spectra of Ni-EDTA, Ni-DTPA, and Ni-NTA complexes were recorded at various pH levels. We assigned absorption maxima and compared our findings with existing literature on each Ni-chelate complex. Furthermore, we examined mixed samples of all three complexes, varying the pH to monitor changes in composition. The results and their implications will be presented in our poster presentation.
This study introduces the licensing process carried out by the regulatory body for construction and operation of the 2nd phase low level radioactive waste disposal facility in Gyeongju. Also, this study presents the experience and lessons learned from this regulatory review for preparing the license review for the next 3rd phase landfill disposal facility. Korea Radioactive Waste Agency (KORAD) submitted a license application to Nuclear Safety and Security commission (NSSC) on December 24, 2015 to obtain permit for construction and operation of the national engineered shallow land disposal facility at Wolsong, Gyeongju. NSSC and Korea Institute of Nuclear Safety (KINS) started the regulatory review process with an initial docket review of the KORAD application including Safety Analysis Report, Radiological Environmental Report and Safety Administration Rules. After reflecting the results of the docket review, the safety review of revised 10 application documents began on November 29, 2016. Total 856 queries and requests for additional information were elicited by thorough technical review until November 16, 2021. As the Gyeongju and Pohang earthquakes occurred in September 2016 and November 2017, respectively, the seismic design of the disposal facility for vault and underground gallery was enhanced from 0.2 g to 0.3 g and the site safety evaluation including groundwater characteristics was re-investigated due to earthquake-induced fault. Also, post-closure safety assessments related to normal/abnormal/human intrusion scenarios were re-performed for reflecting the results of site and design characteristics. Finally, NSSC decided to grant a license of the 2nd phase low level radioactive waste disposal facility under the Nuclear Safety Laws in July 2022. This study introduces important issues and major improvements in terms of safety during the review process and presents the lessons learned from the experience of regulatory review process.
Canine parvovirus type-2 (CPV-2) is a major etiological agent causing gastrointestinal enteritis in domestic and wild carnivores. Since the emergence of CPV-2 in the late 1970s, subtypes CPV-2a, CPV-2b, and CPV-2c have spread worldwide. CPV-2 prevalence differed according to region and season. This study aims to investigate the prevalence of CPV-2 infection in Korea. Samples were collected from 536 dog feces in animal shelters and 225 necropsied intestinal tissues of dog carcasses submitted in the Animal and Plant Quarantine Agency (APQA) for diagnostic purposes from 2016 to 2020 in Korea. Among the 761 samples, 181 (23.8%) were positive for the following subtypes: CPV-2a (n=138), CPV-2c (n=16), CPV-2b (n=14), and CPV-2 (n=2). Feline parvovirus (n=2) and co-infection with CPV-2a and CPV-2c (n=1) were also detected. There was no significant difference in the regional distribution of CPV-2 in Korea, which is prevalent in winter. This result shows the prevalence of CPV-2 according to various environments in Korea and will be useful in establishing an effective prevention strategy against CPV-2 that reflects the situation in Korea with continuous monitoring.
Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4{1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientic scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.
In this study, the near-complete genome sequence of the novel reassortant H1N2 influenza A virus strain A/swine/Korea/KS60/2016 is reported. Sequences of the hemagglutinin (HA), neuraminidase (NA), and polymerase basic 2 (PB2) genes were analyzed, revealing that the isolates contain segments from previous Korean swine H1N2 strains. Additionally, the remaining genes of this strain originated from human H1N1 strains in 2009.