Republic of Korea (ROK) is operating the Integrated Environmental Radiation Monitoring Network (IERNet) in preparation for a radioactive emergency based on Article 105 of the Nuclear Safety Act (Monitoring of Nationwide Radioactive Environment). 215 radiation monitoring posts are monitoring a wide area, but their location is fixed, so they can’t cover areas where the post is not equipped around the Nuclear Power Plants (NPPs). For this, a mobile radiation monitoring system was developed using a drone or vehicle. However, there are disadvantages: it is performed only at a specific cycle, and an additional workforce is required. In this study, a radiation monitoring system using public transportation was developed to solve the above problems. Considering the range of dose rates from environmental radiation to high radiation doses in accidents, the detector was designed by combining NaI (TI) (in the low-dose area) and GM detector (in the high-dose area). Field test was conducted by installed on a city bus operated by Yeonggwang-gun to confirm the performance of the radiation monitoring system. As a result of the field test, it was confirmed that data is transmitted from the module to the server program in both directions. Based on this study, it will be possible to improve the radiation monitoring capability near nuclear facilities.
Feral cats are widely considered to be leading the potential impacts on public health. This study aimed to provide estimates of vital data for feral cats relating Trap-Neuter-Return (TNR) to establish strategies effectively to manage feral cats in Pyeongtaek. Thus, this study focused on estimating feral cat population in Pyeongtaek and conducted a comparative analysis of the data for feral cats in Seoul (2013). The number of feral cats was estimated from 23,069 to 26,655 in Pyeongtaek, 2019. In relation to human population, when comparing the number of feral cats of Pyeongtaek and Seoul, it ranged from 4.57% to 5.28%, and from 1.97% to 2.55% respectively. This showed that Pyeongtaek was higher than Seoul. Fewer kittens were found in high-density areas, which the TNR project is believed to be generally effective in controlling the number of feral cats. In conclusion, in urban and rural complexes such as Pyeongtaek City, the number of feral cats compared to the population was higher than that of Seoul City, and the TNR program is believed to be somewhat effective in controlling the number of feral cats. When implementing TNR, it is necessary periodically to investigate the population and reflect them in policymaking.
Bee venom contains a variety of peptides and enzymes, including serine proteases. While the presence of serine proteases in bee venom has been demonstrated, the role of these proteins in bee venom has not been elucidated. Furthermore, there is currently no information available regarding the melanization response or the fibrin(ogen)olytic activity of bee venom serine protease, and the molecular mechanism of its action remains unknown. Here we show that bee venom serine protease (Bi-VSP) is a multifunctional enzyme. In insects, Bi-VSP acts as an arthropod prophenoloxidase (proPO)-activating factor (PPAF), thereby triggering the phenoloxidase (PO) cascade. Bi-VSP injected through the stinger induces a lethal melanization response in target insects by modulating the innate immune response. In mammals, Bi-VSP acts similarly to snake venom serine protease, which exhibits fibrin(ogen)olytic activity. Bi-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products, defining roles forBi-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings provide a novel view of the mechanism of bee venom in which the bee venom serine protease kills target insects via a melanization strategy and exhibits fibrin(ogen)olytic activity.
Classical swine fever virus (CSFV) envelope glycoprotein E2 is the main target for inducing neutralizing antibodies and protective immunity in swine. Here, we report a novel strategy forthe large-scale production of a CSFV E2 subunit vaccine that demonstrates a high immunogenic capability in the larvae of a baculovirus-infected silkworm, Bombyx mori. We constructed a recombinant B. mori nucleopolyhedrovirus (BmNPV) that expressed recombinant polyhedra together with the N-terminal 179 amino acids of CSFV E2 (CSFV E2ΔC). BmNPV-E2ΔC-infected silkworm larvae expressed an approximately 44-kDa fusion protein that was detected using both anti-polyhedrin and anti-CSFV E2 antibodies. Electron and confocal microscopy both demonstrated that the recombinant polyhedra were morphologically normal and contained CSFV E2ΔC. The CSFV E2ΔC antigen produced in BmNPV-E2ΔC-infected silkworm larvae reached 0.68 mg per ml of hemolymph and 0.53 mg per larva at 6 days post-infection. Mice that were immunized with the granule form of recombinant polyhedra or the soluble form of the fusion protein elicited CSFV E2 antibodies, which indicated that the recombinant polyhedra carrying CSFV E2ΔC were immunogenic. The virus neutralization test showed that the serum from mice that were treated with recombinant polyhedra or the soluble form of the fusion protein contained significant levels of virus neutralization activity. These results demonstrate that the present strategy can be used for the large-scale production of CSFV E2 antigen and that the recombinant polyhedra containing CSFV E2ΔC as a granule antigen can be used as a potential subunit vaccine against CSFV.
Pseudorabies virus (PRV), a member of the Alphaherpesviridae, is the causative agent of Aujeszky’s disease in pigs. Glycoprotein B (gB) of PRV, a major constituent of the viral envelope, consists of 916 amino acids. We continuously combined three gB epitopes, E1 (aa 62-129), E2 (aa 217-282), and E3 (aa 543-737). The DNA fragment containing the PRV gB epitopes was fused with polyhedrin gene in order to generate recombinant baculovirus that expresses the recombinant polyhedra with PRV gB epitopes under the control of the Bombyx mori nucleopolyhedrovirus polyhedrin promoter. Recombinant baculoviruses were injected into fifth-instar B. mori larvae. SDS-PAGE and Western blot analyses revealed that recombinant polyhedra constitute polyhedrin and PRV gB epitopes, and that the recombinant PRV gB epitopes showed cross-reactivity against antiserum of PRV gB produced from pig. To examine the immunogenicity of recombinant PRV gB epitopes, we injected into mice as model animals. ELISA results indicated that antibody production is increased in a similar manner in the injection of recombinant polyhedra with PRV gB epitopes, either injected recombinant polyhedra as a granule form antigen without adjuvant or injected recombinant polyhedrin as a soluble form antigen with adjuvant. Taken together, these data show that PRV gB epitopes were produced as a granule form antigen by fusing recombinant polyhedra in baculovirus-infected silkworm larvae and displayed the immunogenicity in mice, indicating the efficacy of the granule form antigen as a PRV gB vaccine.
Background: Proteolytic enzymes are involved in insect molting and metamorphosis and play a vital role in the programmed cell death of obsolete organs. Here we show the expression profile of cathepsin B in the fat body of the silkworm Bombyx mori during development. We also compared the expression profile of B. mori cathepsins B (BmCatB) and D (BmCatD) in the fat body during the larval-pupal transformation of B. mori in the BmCatB or BmCatD RNA interference (RNAi) process. Results: BmCatB is ecdysone-induced and expressed in the fat body of B. mori during the molting, and the larval-pupal and pupal-adult transformations, and its expression leads to programmed cell death. In particular, BmCatB is highly expressed in the fat body of B. mori during the larval-pupal transformation and BmCatB RNAi treatment resulted in the arrest of the larval-pupal transformation. RNAi-treated BmCatB knock-down sustained the expression of BmCatD during the larval-pupal transformation. On the other hand, BmCatD RNAi up-regulated the expression of BmCatB in the fat body of final instar larvae. Conclusion: Based on these results, we conclude that BmCatB is involved in the programmed cell death of the fat body during B. mori metamorphosis and that BmCatB and BmCatD contribute collaboratively to B. mori metamorphosis
Transferrin and ferritin are iron-binding proteins involved in transport and storage of iron as part of iron metabolism. Here, we describe the cDNA cloning and characterization of transferrin (Bi-Tf) and the ferritin heavy chain subunit (Bi-FerHCH), from the bumblebee Bombus ignitus. Bi-Tf cDNA spans 2,340 bp and encodes a protein of 706 amino acids and Bi-FerHCH cDNA spans 1,393 bp and encodes a protein of 217 amino acids. Comparative analysis revealed that Bi-Tf appears to have residues comprising iron-binding sites in the N-terminal lobe, and Bi-FerHCH contains a 5’UTR iron-responsive element and seven conserved amino acid residues associated with a ferroxidase center. The Bi-Tf and Bi-FerHCH cDNAs were expressed as 79 kDa and 27 kDa polypeptides, respectively, in baculovirus-infected insect Sf9 cells. Northern blot analysis revealed that Bi-Tf exhibits fat body-specific expression and Bi-FerHCH shows ubiquitous expression. The expression profiles of the Bi-Tf and Bi-FerHCH in the fat body of B. ignitus worker bees revealed that Bi-Tf and Bi-FerHCH are differentially induced in a time-dependent manner in a single insect by wounding, bacterial challenge, and iron overload.
Metamorphosis is a development process involving the programmed cell death of obsolete larval organs. Aspartic proteinase cathepsin D (BmCatD) is involved in the silkworm Bombyx mori metamorphosis. Here we show a novel functional role of cysteine proteinase cathepsin B during B. mori metamorphosis. The B. mori cathepsin B (BmCatB) was expressed in the fat body, epidermis, ovary, testis, and hemocyte of the larval and pupal stages. The BmCatB was ecdysoneinduced, expressed in the fat body of the molting, the final larval instar and pupal stages, and its expression led to programmed cell death. RNA interference (RNAi)-mediated BmCatB knock-down inhibited the programmed cell death of larval and pupal fat body, resulting in the arrest of larval-pupal transformation. BmCatB RNAi is up-regulated the expression of BmCatD. Based on these results we concluded that BmCatB is critically involved in the histolysis of the larval and pupal fat body, indicating that BmCatB and BmCatD are mutally regulated during silkworm metamorphosis.
Insect nicotinic acetylcholine receptors (nAChRs) are targets for insecticides. Despite the importance of the nAChR as a major target for insecticide action, modulators of nAChRs in insects remain unidentified. Here we describe the cloning and identification of a nAChR modulator gene in an insect. This gene was isolated by searching the firefly Pyrocoelia rufa cDNA library, and the geneitself encodes a protein 120 amino acids in length, named Pr-lynx1. Pr-lynx1 shares all the features, including a cysteine-rich consensus motif and common gene structure, of the Ly-6/neurotoxin superfamily. The recombinant Pr-lynx1, which is expressed as a 12-kDa polypeptide in baculovirus-infected insect Sf9 cells, is normally present at the cell surface asa GPI-anchored protein. Northern and Western blot analyses revealed that Pr-lynx1 is expressed in various tissues, such as the ganglion, brain, mandibular muscle, proventriculus, leg muscle, and epidermis. This expression pattern is similar to the distribution of nAChRs as assayed by α3 nAChR immunoreactivity. Co-expression of Pr-lynx1 in Xenopus oocytes expressing α3β4 nAChRs results in an increase in acetylcholine-evoked macroscopic currents, indicating a functional role of Pr-lynx1 as a protein modulator for nAChRs. This study on Pr-lynx1 is the first report of a modulator of nAChRs in an insect species.
장 건강에 유익한 프리바이오틱스 소재를 개발하기 위하여 배변을 촉진하는 효능을 지닌 붉은팥을 식품 발효에 이용되는 Bacillus subtilis KCCM 11965P로 발효하여 다음과 같은 결과를 얻었다. 붉은팥의 일반성분은 회분 3.35±0.04%, 조단백질 21.1±0.19%, 조지방 0.35±0.02% 함 유되었다. 붉은팥 원물 1%, 3%, 5%와 Bacillus subtilis KCCM 11965P 3% (v/v)를 접종하여 0, 24, 48, 72시간 배양 하였다. 배양액의 총균수를 측정한 결과 붉은팥 원물을 3% 첨가한 후 72시간 배양군에서 Bacillus subtilis KCCM 11965P 발효가 가장 적합하였다. 발효 시간에 증가함에 따라 총 폴리페놀 함량과 DPPH 라디칼 소거활성이 증가하였다. Protease 활성은 붉은팥 원물 5% 첨가한 후 72시간 배양한 군(2.69±0.003 unit/mL)에서 활성이 가장 높았다. 발효시간과 붉은팥 원물 첨가 농도가 증가함에 따라 α -amylase 활성도 증가하였으며, 붉은팥 원물 5% 첨가한 후 72시간 배양한 군에서 0시간 배양군(1.0±0.1 unit/mL) 보다 26.0±0.2 unit/mL로 증가하였다. Bacillus subtilis KCCM 11965P로 72시간 배양한 후 유리아미노산을 측정한 결과 leucine은 붉은팥 원물 5% 첨가한 0시간 배양군 5.22 mg/L 에서 67.59 mg/L로 증가하였으며, 비필수아미노산인 tyrosine은 5% 첨가 0시간 배양군 10.08 mg/L에서 259.35 mg/L로 증가하였다. 이와 같이 Bacillus subtilis KCCM 11965P로 붉은팥을 발효하면 항산화 활성, protease 효소활성, 및 α-amylase 효소 활성이 증가하였으며, 유리아미노 산과 유기산이 증가하였다. 붉은팥을 발효하는데 Bacillus subtilis KCCM 11965P가 적합할 것으로 판단되며, 붉은팥은 프로바이오틱스를 활성화시켜 장 건강을 증진시킬 수 있는 프리바이오틱스 소재로 개발할 수 있는 가능성을 시사 하였다.
In a mercury leaching test for waste using the Korean Standard Method (ES 06404.1), the pre-treatment process of an eluate is very complicated with a high possibility of contamination and low mercury recovery rate. It is also difficult to analyze multiple samples in a short time and the process generates experimental wastes. Accordingly, a direct mercury analyzer (DMA) applying thermal decomposition gold-amalgamation analysis has been recently used. The method shows a relatively high recovery rate for solid samples without complicated pre-treatment and it can be applied to both liquid and solid samples as the EPA method 7473 does. In order to use the auto-sampler in DMA for analyzing many elution samples from waste, this study checked recovery rates depending on acid solutions and additives during continuous analysis. The result showed a significant drop in recovery and precision except for an L-cysteine added sample. Considering commonly used acid-treatment of wastes, three types of acid solutions (nitrate, hydrochloric acid and sulfate) were chosen for analysis, and precision and accuracy were relatively high in nitric acid solution. It has been determined that accuracy and precision improved when 0.01% L-cysteine was added as an additive and this reduced the impact of continuous measurement. Therefore, during analysis of liquid samples or eluted samples using DMA continuously, introducing suitable additives is necessary depending on pre-treatment method in order to improve accuracy and precision in the analysis of mercury.