검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2006.09 구독 인증기관·개인회원 무료
        An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from WO3 and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at 1300 oC for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region.
        2.
        2006.09 구독 인증기관·개인회원 무료
        A new tungsten heavy alloy with hybrid structure was manufactured for the kinetic energy penetrator. The tungsten heavy alloy is composed of two parts: core region is molybdenum added heavy alloy to promote the self-sharpening; outer part encompassing the core is conventional heavy alloy to sustain severe load in a muzzle during firing. From ballistic test, it was found that the penetration performance of the hybrid structure tungsten heavy alloy is higher than that of conventional heavy alloy. This heavy alloy is thought to be very useful for the penetrator in the near future.
        3.
        2006.09 구독 인증기관·개인회원 무료
        W-Cu alloy was very useful material for a heat sink, high electric contact and EDM electrode. Powder injection molding (PIM) is the optimum manufacturing technology to provide W-Cu components with low-cost and high-volume. We used various compositions of tungsten coated copper powders (W-Cu with 10 to 80 wt-% of copper) to manufacture W-Cu components by PIM. The optimum mixing, injection molding, debinding and sintering conditions to provide the high performance W-Cu components were investigated. The thermal and mechanical properties of W-Cu parts by PIM were measured. Finally, we can verify the high performance of W-Cu components by PIM with the tungsten coated copper.
        4.
        2006.04 구독 인증기관·개인회원 무료
        Thermal management technology is a critical element in all new chip generations, caused by a power multiplication combined with a size reduction. A heat sink, mounted on a base plate, requires the use of special materials possessing both high thermal conductivity (TC) and a coefficient of thermal expansion (CTE) that matches semiconductor materials as well as certain packaging ceramics. In this study, nano tungsten coated copper powder has been developed with a wide range of compositions, 90W-10Cu to 10W-90Cu. Powder technologies were used to make samples to evaluate density, TC, and CTE. Measured TC lies among theoretical values predicted by several existing models.