Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions.
The balloon flower (Platycodon grandiflorum A. DC.) is a medicinal and perennial flowering plant. Jangback is an important white-flower type balloon flower cultivar registered in South Korea, but no molecular marker was available to differentiate it from other white-flower lines. Therefore, we evaluated five P. grandiflorum white-flower lines and identified a single nucleotide polymorphism (SNP) derived from the chloroplast TrnL-F genomic sequence that specifically differentiated Jangback from the other four genotypes. Cultivar identification was achieved by detecting allelic variations of the SNP using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) analysis and high resolution melting (HRM) curve analysis. The present study describes a rapid and reliable method to authenticate the medicinally and economically valuable white-flower Jangback cultivar. Our results indicate that the plastid TrnL-F region provides for marker assisted identification and selection in intraspecific polymorphism studies, thereby the identified SNP marker provides a robust tool along with ARMS-PCR and HRM curve analysis for rapid and efficient identification of the medicinally valuable Jangback cultivar.
We investigated the effects of fluctuating temperature on development and fertility of M. persicae at different temperature conditions, 10, 15, 20, 25, 28, and 30±5℃, respectively. In this study, we collected detailed data on development periods, and fertility of M. persicae at six different temperatures. We analyzed the life table parameters of M. persicae using age-stage, two-sex life table program. The intrinsic and finite rate of increase were the highest at 25±5℃. The fertiltiy was the highest at 20±5℃.
This study focused on the genomic analysis of Anopheles kleini and Anopheles pullus, both vectors of vivax malaria within the Anopheles Hyrcanus group. Using Illumina NovaSeq600 and Oxford Nanopore platforms, we identified 126 and 116 contigs, along with 40,420 and 32,749 genes from An. kleini and An. pullus, respectively. The assembled genome sizes were 282 Mb for An. kleini and 247 Mb for An. pullus, which are within a similar range to the sizes previously estimated by digital PCR (249 Mb and 226 Mb). We are currently also estimating the genome sizes of other Anopheles spp. and manually curating key genes determining vectorial capacity.
The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) will provide all-sky spectral survey data covering optical to mid-infrared wavelengths with a spatial resolution of 6.′′2, which can be widely used to study galaxy formation and evolution. We investigate the galaxy-galaxy blending in SPHEREx datasets using the mock galaxy catalogs generated from cosmological simulations and observational data. Only ∼0.7% of the galaxies will be blended with other galaxies in all-sky survey data with a limiting magnitude of 19 AB mag. However, the fraction of blended galaxies dramatically increases to ∼7–9% in the deep survey area around the ecliptic poles, where the depth reaches ∼22 AB mag. We examine the impact of the blending in the number count and luminosity function analyses using the SPHEREx data. We find that the number count can be overestimated by up to 10–20% in the deep regions due to the flux boosting, suggesting that the impact of galaxy-galaxy blending on the number count is moderate. However, galaxy-galaxy blending can marginally change the luminosity function by up to 50% over a wide range of redshifts. As we only employ the magnitude limit at Ks-band for the source detection, the blending fractions determined in this study should be regarded as lower limits.