검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental DNA (eDNA) has emerged as a promising tool for aquatic biodiversity monitoring, yet its collection in lentic ecosystems remains technically constrained by filtration capacity and field logistics. In this study, we applied a novel eDNA concentration system, QuickConcTM, to evaluate freshwater mussel diversity in lakes, and compared its performance with the conventional GF/F filtration method. Water samples were collected from four reservoirs at surface, mid, bottom, and waterside layers, and processed using both filtration techniques. Metabarcoding of mitochondrial 16S rDNA revealed that QuickConcTM captured a higher average number of amplicon sequence variants (ASVs) and exhibited greater species richness and diversity indices (Shannon and Simpson), although the differences were not statistically significant. QuickConcTM samples showed a greater capacity to detect rare taxa and to recover higher ASV richness in certain cases, suggesting its potential to enhance biodiversity resolution. Species composition remained consistent across methods, with Cristaria plicata and Sinanodonta lauta being dominant in both cases. However, slight spatial variations in species assemblages were observed between center and waterside sampling points, highlighting the influence of habitat heterogeneity on eDNA distribution. Overall, our results demonstrate that the QuickConcTM system offers a practical and efficient alternative to traditional filtration methods for eDNA-based freshwater mussel monitoring, particularly in environments with high suspended solids. The findings underline the need for adaptive sampling strategies that consider both methodological and ecological factors when designing eDNA surveys in lentic ecosystems.
        4,000원
        2.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Freshwater bivalves contribute to key ecological functions in lake ecosystems, yet their cryptic and benthic lifestyles often hinder detection through conventional surveys. In this study, we applied environmental DNA (eDNA) metabarcoding to assess the diversity and distribution of unionid bivalves in six lakes across Republic of Korea. Water samples were collected from three sampling strategies-Center Surface, Center Mix, and Waterside Surface-and processed using 16S rDNA-targeted primers followed by high-throughput sequencing. A total of four unionid species (Cristaria plicata, Sinanodonta lauta, Unio (Nodularia) douglasiae, and Anodonta woodiana) were detected across 18 sampling points. Notably, eDNA successfully identified unionid presence in all lakes, even where conventional surveys failed to observe individuals. Among the sampling strategies, Center Mix exhibited the highest values for Shannon and Simpson indices as well as ASV richness. Waterside Surface samples generally showed lower diversity and detection frequency. A Venn diagram of ASV occurrences revealed three ASVs shared across all sampling strategies and one unique ASV found only in Center Mix. These results indicate that sampling location significantly affects detection sensitivity and diversity representation in eDNA-based bivalve monitoring. Combined application of Center Mix and Center Surface strategies may enhance both detection efficiency and species diversity coverage in lentic environments.
        4,200원
        3.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental DNA (eDNA) analysis has emerged as a powerful tool for biodiversity monitoring due to its efficiency, standardization potential, and cost-effectiveness. We evaluated the applicability of eDNAbased zooplankton monitoring in Korean lakes by comparing three DNA methods-eDNA, iDNA, and eiDNA-with traditional microscopy. Sampling was conducted in six lakes with varying conditions. eDNA was obtained from lake water, iDNA from unpreserved zooplankton incubated in water, and eiDNA from zooplankton incubated in ethanol. DNA metabarcoding detected more taxa than microscopy, but dominant taxa overlapped, mainly Daphnia. While DNA methods showed higher richness, Simpson and Shannon indices were higher in microscopy, reflecting differences in quantification methods. These discrepancies reflect methodological differences in how taxa are quantified and suggest that DNA-based approaches may overrepresent certain groups in richness estimates. In addition, false negatives were observed for several common rotifer species (e.g., Keratella, Polyarthra), likely due to incomplete reference databases and high intraspecific genetic diversity. Conversely, some taxa detected only by DNA-particularly small-bodied or rare crustaceans-may represent false positives relative to microscopy. These findings emphasize the importance of improving reference libraries and interpreting DNA results with caution, while also supporting the utility of DNA-based methods as complementary tools in zooplankton monitoring and national biodiversity assessments.
        4,600원
        4.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzed and presented zooplankton species occurrence, diversity distribution, and community composition in ninety lakes across South Korea using samples collected through the “Survey of Lake Aquatic Ecosystem Status and Health Assessment.” When comparing our results with the National Species Checklist, we identified factors within each of the three taxa that warrant improvement due to their influence on diversity assessments. To bridge the gap between the ongoing lake ecosystem surveys and the continually updated National Species Checklist-and to enhance the accuracy of diversity evaluations-we conclude that (1) greater taxonomic rigor must be reflected in the national checklist, and (2) the limitations of morphology-based identification (α-taxonomy) must be addressed. Because the National Species Checklist does not distinguish among species, subspecies, and morphospecies, it can give rise to taxonomic oversplitting and taxonomic inflation, leading to ambiguous diversity-index results. Moreover, the low resolution of morphological identification for zooplankton (at the genus, family, or class level) can introduce errors when comparing communities across habitats or detecting non-native introductions. Although alternatives such as environmental DNA and functional diversity exist, they require further refinement before being adopted in policy; therefore, they should be implemented alongside and in comparison with current aquatic ecosystem health assessment methods.
        5,200원
        5.
        2025.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study summarizes the history of zooplankton research in the Nakdong River basin, Korea, and discusses its main characteristics by topic. A review of major academic search portals revealed 56 studies on zooplankton in the Nakdong River basin, which account for 27.6% of the 203 domestic freshwater zooplankton studies. With the exception of one study conducted before the construction of the estuary barrage, all other research was carried out after the barrage was built. Of the studies, 27 were related to lotic ecosystems, and 29 focused on lentic ecosystems, with research predominantly conducted south of Daegu Metropolitan City. Short-term studies of less than a year were common for lentic ecosystems, while longterm studies were mainly focused on lotic ecosystems. The key research sites were the Mulgeum water intake in the lower Nakdong River and Upo Wetland, the largest inland wetland in Korea, where research periods and zooplankton sampling were most diverse. Research on predation and prey interactions has been ongoing, as zooplankton plays an intermediary role by feeding on phytoplankton and serving as food for juvenile fish. Recent studies show that, since around 2015, the water quality and zooplankton community dynamics around Mulgeum have changed, requiring continuous monitoring. To address this, predictive model analysis, isotope analysis, and indicator analysis, widely used in Nakdong River research, could help develop health indicators for aquatic ecosystems using zooplankton.
        4,000원
        6.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, Korean government has incorporated the assessment and restoration of river continuity as a key component of its integrated water management policy. While, methodologies for evaluating discontinuities and degradation, as well as the procedures for assessment and restoration, have been developed and proposed, there is a need for further improvement. Therefore, further research is required to establish a conceptual framework for continuity specific to domestic river ecosystems and to formulate appropriate assessment methods and restoration strategies. In this study we conduct a comparative analysis of the concepts, restoration approaches, and comprehensive evaluation methods for river continuity as proposed by Japan, the United States, and the European Union (EU), all of which have long-standing frameworks for river continuity assessment and restoration projects. Each country demonstrates distinct objectives and guidelines: Japan emphasizes habitat continuity within the context of river and watershed continuity, the United States integrates continuity as a tool for watershed management, and the EU prioritizes biodiversity conservation by advocating for the removal of artificial barriers and promoting the restoration of free-flowing rivers (FFR). By investigating these international examples, this study provides insights that can guide the development of long-term strategies and evaluation criteria for securing aquatic ecosystem continuity in Korea.
        5,500원
        7.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Zooplankton biomass is essential for understanding the quantitative structure of lake food webs and for the functional assessment of biotic interactions. In this study, we aimed to propose a biomass (dry weight) estimation method using the body length of cyclopoid copepods. These copepods play an important role as omnivores in lake zooplankton communities and contribute significantly to biomass. We validated several previously proposed estimation equations against direct measurements and compared the suitability of prosomal length versus total length of copepods to suggest a more appropriate estimation equation. After comparing the regression analysis results of various candidate equations with the actual values measured on a microbalance-using the coefficient of variation, mean absolute error, and coefficient of determination-it was determined that the Total Length-DW exponential regression equation [W=0.7775×e2.0183L; W (μg), L (mm)] could be used to calculate biomass with higher accuracy. However, considering practical issues such as the morphological similarity between species and genera of copepods and the limitations of classifying copepodid stages, we derived a general regression equation for the pooled copepod community rather than a species-specific regression equation.
        4,300원
        8.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In ecosystems within limited resources, interspecific competition is inevitable, often leading to the competitive exclusion of inferior species. This study aims to provide foundational information for the conservation and restoration management of Microphysogobio rapidus by evaluating species’ ecological response to biological factors within its habitat. To understand this relationship, we collected food web organisms from site where M. rapidus coexist with Microphysogobio yaluensis, a specie ecologically similar to M. rapidus, and evaluated the trophic levels (TL), isotopic niche space (INS), and the overlap of INS among fishes within the habitat using stable isotope analysis. Our analysis revealed that the M. rapidus exhibited a higher TL than M. yaluensis, with TL of 2.6 and 2.4, respectively. M. yaluensis exhibited a broad INS, significantly influencing the feeding characteristics of most fish. Conversely, M. rapidus showed a narrow INS and asymmetric feeding relationships with other species, in habitats with high competition levels. This feeding characteristics of M. rapidus indicate that the increase in competitors sharing the similar resources lead to a decrease in available resources and, consequently, is expected to result in a decrease in their density.
        4,300원
        9.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The medium-large cladoceran species Simocephalus spp. predominantly occur in habitats with developed aquatic vegetation. Accordingly, due to Simocephalus’ high contribution to zooplankton community biomass in the lake’s littoral zone and wetland habitats, estimating their biomass is important to understand the matter cycling based on biological interactions within the aquatic food web. In this study, we reviewed the length-weight regression equations used previously to estimate Simocephalus biomass, directly measured S. serrulatus’ body specification (length, width and area) and their biomass (dry weight) using instruments such as a microscopic digital camera and a microscale, and performed regression analysis between each other. When S. serrulatus biomass was estimated using the equation (Kawabata and Urabe, 1998) presented in 『Biomonitoring Survey and Assessment Manual』, Korea, errors between estimates and measures were relatively large compared to the S. serrulatus species-specific biomass estimate equation developed by Lemke and Benke (2003). In addition, both equations showed not only increasing trends in error (estimate-measure) with increasing S. serrulatus’ body length, but also in error variance among similar-sized individuals. The results of regression analysis with dry weight by body specifications indicated that the most appropriate equation for estimating the biomass of S. serrulatus was derived from the width-dry weight exponential regression equation (R2=0.9555). The review and development study of such species-specific biomass estimation equations for zooplankton can be used as a tool to understand their role and function in aquatic ecosystem food webs.
        4,200원
        10.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, Korean government has introduced Multi Metric Indices (MMI) using various biocommunity information for aquatic ecosystem monitoring and ecosystem health assessment at the national level. MMI is a key tool in national ecosystem health assessment programs. The MMI consists of indices that respond to different target environmental factors, including environmental disturbance (e.g. nutrients, hydrological and hydraulic situation of site etc.). We used zooplankton community information collected from Korean lakes to estimate the availability of candidate zooplankton MMI indices that can be used to assess lake ecosystem health. First, we modified the candidate indices proposed by the U.S. EPA to suit Korean conditions. The modified indices were subjected to individual index suitability analysis, correlation analysis with environmental variables, and redundancy analysis among indices, and 19 indices were finally selected. Taxonomic diversity was suggested to be an important indicator for all three taxonomic groups (cladoceran, copepod, rotifer), on the other hand, the indices using biomass for large cladocerans and copepods, while the indices using abundance were suggested for small cladocerans and rotifers.
        4,500원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Through sample-size-based rarefaction analyses, we tried to suggest the appropriate degree of sample concentration and sub-sample extraction, as a way to estimate more accurate zooplankton species diversity when assessing biodiversity. When we collected zooplankton from three reservoirs with different environmental characteristics, the estimated species richness (S) and Shannon’s Hʹ values showed different changing patterns according to the amount of sub-sample extracted from the whole sample by reservoir. However, consequently, their zooplankton diversity indices were estimated the highest values when analyzed by extracting the largest amount of sub-sample. As a result of rarefaction analysis about sample coverage, in the case of deep eutrophic reservoir (Juam) with high zooplankton species and individual numbers, it was analyzed that 99.8% of the whole samples were represented by only 1 mL of sub-sample based on 100 mL of concentrated samples. On the other hand, in Soyang reservoir, which showed very small species and individual numbers, a relatively low representation at 97% when 10 mL of sub-sample was extracted from the same amount of concentrated sample. As such, the representation of sub-sample for the whole zooplankton sample varies depending on the individual density in the sample collected from the field. If the degree of concentration of samples and the amount of subsample extraction are adjusted according to the collected individual density, it is believed that errors that occur when comparing the number of species and diversity indices among different water bodies can be minimized.
        4,200원
        12.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Estuary is important in terms of biodiversity because it has the characteristics of transition waters, created by the mixing of fresh- and seawater. The estuarine water circulation provides a variety of habitats with different environments by inducing gradients in the chemical and physical environment, such as water quality and river bed structure, which are ultimately the main factors influencing biological community composition. If the water circulation is interrupted, the loss of brackish areas and the interception of migration of biological communities will lead to changes in the spatial distribution of biodiversity. In this study, among the sites covered by the Estuary Aquatic Ecosystem Health Assessment, we selected study sites where changes in biodiversity can be assessed by spatial gradient from the upper reaches of the river to the lower estuarine area. The α-, γ- and β-diversity of diatom, benthic macroinvertebrates, and fish communities were calculated, and they were divided into open and closed estuary data and compared to determine the trends in biodiversity variation due to estuarine circulation. As results, all communities showed higher γ-diversity at open estuary sites. The benthic macroinvertebrate community showed a clear difference between open and closed estuaries in β-diversity, consequently the estuarine transects were considered as a factor that decreases spatial heterogeneity of their diversity among sites. The biodiversity trends analyzed in this study will be used to identify estuaries with low γ- and β-diversity by community, providing a useful resource for further mornitoring and management to maintain estuarine health.
        4,800원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package “dtwclust”. Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.
        4,000원
        14.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.
        5,100원
        15.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To understand how to efficiently observe the biomass and community of phytoplankton, phytoplankton sampling was carried out from June to October 2019 at the Yeongju dam sediment control reservoir (YJ) and Bohyeonsan dam reservoir (BH1 and BH2). The results derived from microscopic observation, such as the conventional phytoplankton qualitative/quantitative analysis, and from the CHEMTAX method based on the pigments, were compared. The relative contribution of phytoplankton, calculated by the microscopy and CHEMTAX methods, showed a significant difference in all four classes: cryptophyta, chlorophyta, cyanobacteria, and diatoms. In addition, the correlation between the two observation methods was poor. This might be caused by methodological differences in microscopy that do not consider the varying cell sizes among phytoplankton species. In this study, by converting the cells into carbon, the slope between both carbon biomasses based on microscopy and CHEMTAX was improved close to the 1 : 1 line, and the y-intercept was closer to 0 for cryptophyta and diatoms. For cyanobacteria, the slope increased, the y-intercept decreased, and the plot approached 1 : 1 although the correlation coefficients were not improved in all classes. The present study suggests that application of CHEMTAX based on pigment analysis could be a possible approach to efficiently determine the relative carbon proportions of individual classes of phytoplankton community composition.
        4,300원
        16.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 생태계의 환경유전자 적용도 가속화되고 있으나 생산된 데이터를 처리하고 분석하는데 한계를 느끼고 있으며, 분석 생산된 생물데이터의 신뢰성에 대한 의구심이 제기되기도 하고 시료 매체 (대상 시료, 물, 공기, 퇴적물, 위내용물, 분변 등) 간의 방법에 따른 차이와 분석 방법의 정량화와 개선 등이 필요한 상태이기도 하다. 따라서 국내 생태계의 환경 유전자를 활용한 생물다양성 연구의 신뢰성과 정확성을 확보하기 위해서는 생태분류학으로 축적된 데이터베이스를 적 극적으로 활용하여 검증 절차를 거치고, 유전자 서열 분석으로 높아진 데이터의 해상력을 전문가들이 검증하는 과정이 반드시 필요하다. 환경유전자 연구는 분자생물학적인 기술 적용으로만 해결될 수 없으며, 생산된 데이터의 신뢰성을 확보하기 위한 생태-분류-유전학-인포메틱스 등 학제 간의 연구 협력이 중요하며, 다양한 매체를 다루는 연구자들이 함께 접근할 수 있는 정보 공유 플랫폼이 절실한 분야이며, 발전의 속도도 급격하게 진행될 것이고 축적되는 데이터는 수년 내에 빅테이터로서 성장할 수 있을 것으로 기대된다.
        4,000원
        17.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        호소 생태계에 대한 생물측정망 조사 및 평가지침은 동물플랑크톤 조사의 편의성을 고려하여 출현 종 수와 개체 군밀도, 군집 지수 등을 상대적으로 비교하기 위해 수심 5 m 이하의 얕은 호소-수변부에서 사선끌기, 수심 20 m 이상 호소-전수심 수직끌기, 그 이상의 깊은 호소-20 m까지의 수심을 대상으로 한 수직끌기를 제시하고 있다. 본 연구에 서는 지침에서 제시하는 방법 중 사선끌기법과 20 m 수직 끌기법을 각각 전수심을 대상으로 한 조사 방법과 비교하여 동물플랑크톤 군집 정보의 차이 및 특성에 대해 분석 하였다. 군집 지수의 경우 수심이 얕은 호수에서의 사선끌 기법/수직끌기법 비교에서는 차이를 보이지 않은 반면, 수 심이 깊은 호소에서는 끌기 수심을 20 m로 제한할 경우보다 전수심 수직끌기를 적용했을 때 다양도 및 풍부도 지수 가 상승하는 것으로 나타났다. 또한, 사선끌기 및 20 m 수직끌기를 통해 채집한 동물플랑크톤 시료로부터 표면~저층 상층부까지의 전수심을 채집 대상으로 설정한 경우보 다 약 3배 정도 높은 개체군 밀도가 계산되어, 동물플랑크톤 총 개체 밀도가 크게 과대 평가되는 것으로 나타났다. 이러한 차이는 동물플랑크톤 수직 분포 특성상 발생하는 수층별 동물플랑크톤 개체 밀도 차이 및 여과된 원수량의 차이에서 비롯된 결과로 판단되며, 이에 따라 호소를 대변 하여 수체 간 또는 수체 내 변동을 보다 정확히 파악하고 호 내 2차 생산과 관련한 기능적 정량 지표로서 동물플랑크톤 군집 정보의 활용을 고려할 경우, 수심에 따른 개체 군밀도 분포와 전체 개체수 환산 시 수층별 기여율을 고려한 전수심 수직끌기 방법의 적용이 보다 적절할 것으로 분석되었다.
        4,000원
        18.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        오염지표생물로서 널리 활용되고 있는 깔따구는 잡식, 초식, 육식성 등 종에 따라 다양한 섭식형태를 보이는 것으로 알려져 있다. 그중 잡식성으로 알려져 있는 삼지창무늬깔따구 (P. scalaenum)는 국내의 다양한 하천 생태계에서 우점하기 때문에 하천 생태계 내 먹이 사슬에 있어 중요한 역할을 담당하고 있다. 그럼에도 불구하고 먹이원에 대한 자세한 정보가 부족한 실정이다. 이에 본 연구에서는 국내 4대강의 대표적인 보 (이포보, 세종보, 죽산보, 강정고령보, 달성보) 구간에 서식하는 삼지창무늬깔따구를 대상으로 소화관 내용물을 분석하여 먹이원을 파악하고자 하였다. 이포보에서 채집된 깔따구 소화관에서 동물플랑크톤의 사체 (부속지, 강모 등)가 다수 포함된 반면, 다른 4개보의 깔따구 소화관에서는 식물플랑크톤이 주를 이루고 있었다. 깔따구의 소화관 내용물과 환경에 식물플랑크톤 종 조성은 매우 유사하였으며, 정점 간 종 조성의 차이가 뚜렷하게 나타났다. 본 연구에서 수행된 삼지창무늬깔따구의 소화관 분석은 잡식성 깔따구의 섭식 특성을 파악할 수 있었으며, 특히 깔따구의 소화관 내용물 분석을 통한 주변 수환경 내 기초생산자의 종 조성 파악 연구의 가능성을 보였다.
        4,000원
        19.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        동물플랑크톤은 식물플랑크톤 및 기타 소형 미생물을 섭식하고, 고차 생물군집에 포식되어 일차생산과 상위 영양단계를 연결하는 중추적인 연결고리 역할자로 수생태계 내 물질 및 에너지 순환 구조와 기능을 이해하는데 필수적인 요소로 여겨지고 있다. 하지만, 동물플랑크톤은 분류군에 따라 상이한 크기와 유영능력, 그에 따른 다양한 서식 특성을 가지고 있어, 식물플랑크톤에 비해 다소 복잡한 채집 및 분석방법이 요구된다. 정확한 동물플랑크톤 정량화를 위해서는 종특이적인 분포를 고려하여 장소를 선정하 고 적합한 도구 (채수기, 플랑크톤 네트 등)를 이용하여 시료를 채집해야 할 필요가 있으며, 동정 및 계수 중에 발생 할 수 있는 오차를 최소화하기 위해서는 고정법과 부차시료에 대한 고려도 중요하다. 본 논문에서는 현재 사용되고 있는 대표적인 동물플랑크톤 정량채집방법 및 시료처리방법의 장·단점을 소개하여 연구 목적에 부합하는 방법을 선택, 적용할 수 있도록 가이드라인을 제시하고자 하였다.
        4,600원
        20.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, quantitative analyses of food web structure based on carbon and nitrogen stable isotopes are widely applied to environmental assessments as well as ecological researches of various ecosystems, particularly rivers and streams. In the present study, we analyzed carbon and nitrogen stable isotope ratios of POM (both planktonic and attached forms), zooplankton, benthic macroinvertebrates and fish collected from 6 sites located at Nakdong River. Samples were collected from upstream areas of 5 weirs (Sangju, Gangjeong- Goryeong, Dalseong, Hapcheon-Changnyeong, and Changnyeong-Haman Weirs) and one downstream area of Hapcheon-Changnyeong Weir in dry season (June) and after rainy season (September). We suggested ranges of their carbon and nitrogen stable isotope ratios and calculated their trophic levels in the food web to compare their temporal and spatial variations. Trophic levels of organisms were relatively higher in Sangju Weir located at upper part of Nakdong River, and decreased thereafter. However, the trophic levels were recovered at the Changnyeong-Haman Weir, the lowest weir in the river. The trophic level calculated by nitrogen stable isotope ratios showed more reliable ranges when they were calculated based on zooplankton than POM used as baseline. The suggested quantitative ecological information of the majority of biological communities in Nakdong River would be helpful to understand the response of river food web to environmental disturbances and can be applied to various further researches regarding the quantitative approaches for the understanding food web structure and function of river ecosystems as well as restoration.
        4,800원
        1 2