Background: Some phenolics detected in the soil may inhibit the seed germination and seedling growth of ginseng (Panax ginseng). This study investigated the effect of irrigation and ginseng root residue addition on the soil microbial community and root rot disease in 2-year-old ginseng.
Methods and Results: Each 20 ℓ pot was filled with soil infected with ginseng root rot pathogens, and irrigated daily with 2 ℓ of water for one month. After the irrigation treatment, ginseng fine root powder was mixed with the irrigated soil at a rate of 20 g per pot. In descending order, NO3 −, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) decreased due to irrigation. In descending order, NO3 −, EC, Ex. K, and available P2O5 increased with the additon of ginseng powder to the soil. The abundance of Trichoderma crassum decreased with irrigation, but increased again with the incorporation of ginseng powder. The abundance of Haematonectria haematococca increased with irrigation, but decreased with the incorporation of ginseng powder. The abundance of Cylindrocarpon spp. and Fusarium spp., which cause ginseng root rot, increased with the incorporation of ginseng powder. The abundance of Arthrobacter oryzae and Streptomyces lavendulae increased with irrigation. The abundance of Streptomyces lavendulae decreased, and that of Arthrobacter spp. increased, with the incorporation of ginseng powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot increased with the incorporation of ginseng powder.
Conclusions: Ginseng root residues in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.
Background : Root rot is a major factors of replanting failure in ginseng cultivation. Some of the phenolics detected in the soil could inhibit the seed germination and seedling growth of ginseng.
Methods and Results : Water of 2 ℓ was irrigated per pot (20 ℓ) into the soil infected with ginseng root rot pathogens for one month every day. After the irrigation treatment, the powder of ginseng fine root of 20 g per pot was mixed with the irrigated soil. NO3 -, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) were decreased in descending order by irrigation. NO3 -, EC, Ex. K, and available P2O5 were increased in descending order by incorporation of ginseng powder into soil. Trichoderma crassum was decreased by irrigation, but it was increased again by incorporation of powder. Haematonectria haematococca was increased by irrigation, but it was decreased by incorporation of powder. Cylindrocarpon spp. and Fusarium spp. causing ginseng root rot were increased by incorporation of powder. Arthrobacter oryzae and Streptomyces lavendulae were increased by irrigation. Streptomyces lavendulae was decreased, and Arthrobacter spp. was increased by incorporation of powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot was increased by incorporation of powder.
Conclusion : The residues of ginseng root in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.
Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.
Background : The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot in many ginseng production areas. Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. Methods and Results : Five kinds of rotation crops, sudan grass soybean peanut sweet potato, perilla were grown for one year in ginseng garden harvested 6-year-old ginseng. The ratio of gram-negative bacteria, fungi, bacteria, total microbial biomass, aerobic/anaerobic microbes were increased by rotational crop cultivation, while the ratio of actinomycetes and the ratio of saturated to unsaturated fatty acids were decreased. The increase in the fungal density or the increase in the proportion of fungi to the bacteria tended to increase the incidence of root rot, but there was no significant difference. The yield of ginseng root showed a highly significant negative correlation with actinomycetes. The correlation between the soil chemical properties and the incidence of root rot was analyzed by cultivating 23 kinds of green manure crops for one year in field where cultivated ginseng continuously. The survival rate of ginseng showed a highly significant positive correlation with soil acidity and a highly significant negative correlation with nitrate nitrogen, and a significant negative correlation with soil salt concentration. Conclusion : Rotation crops improved soil microbial communities, lowered the rate of fungi and increased the proportion of bacteria, the survival rate of ginseng was significantly correlated with soil acidity, nitrate nitrogen and soil salinity.
Background: Some plants have harmful effects on fungi and bacteria as well as plants. Incorporating into soil as green manures are effective in reducing population densities of soil pathogens. Methods and Results: Twenty-three species of green manure crops were cultivated after the harvest of 6-year-old ginseng and then incorporated green manure into the soil at the flowering stage. The following year, the root rot ratio of 2-year-old ginseng and soil chemical properties were investigated. Sorghum sudanense, Helianthus annuus, and Helianthus tuberosus were relatively high in dry matter production. Without incorporating green manure into soil, NO3, EC (electric conductivity) and K were decreased by 95%, 79% and 65%, respectively. When green manure was incorporated to soil, P2O5 and NO3, were reduced by 41% and 25%, respectively. The survived root ratio of 2-year-old ginseng were significantly increased by 56.2%, 47.5%, and 47.3% in Sorghum sudanense, Ricinus communis and Helianthus tuberosus, respectively, In addition, there was a significant increase in Secale cereale, Chrysanthemum morifolium, Atractylodes macrocephala, and Smallanthus sonchifolius. The survived root ratio of ginseng showed a significant positive correlation with soil pH and a negative correlation with NO3, and EC. Conclusion: Cultivation of Chrysanthemum family mainly using rhizome and root as green manure was effective for root rot disease of ginseng.
Background: Some plants have harmful effects on fungi and bacteria as well as other plants. Incorporating such plant into soil as green manure is effective in reducing population densities of soil pathogens.
Methods and Results: Twenty-three species of green manure crops were cultivated after the harvest of 6-year-old ginseng and then incorporated into the soil at the flowering stage. The following year, the root rot ratio of 2-year-old ginseng and soil chemical properties were investigated. In the absence of green manure addition, the NO3 content, electric conductivity (EC), and K content decreased by 95%, 79% and 65%, respectively. In the presence of green manure addition, P2O5 and NO3 contents reduced by 41% and 25%, respectively. The “survived root ratio” of 2-year-old ginseng significantly increased by 56.2%, 47.5%, and 47.3%, in the Sorghum sudanense, Ricinus communis and Helianthus tuberosus treatment, respectively. In addition, there was a significant increase in the “survived root ratio” in the Secale cereale, Chrysanthemum morifolium, Atractylodes macrocephala, and Smallanthus sonchifolius treatments. The “survived root ratio” of ginseng showed a significant positive correlation with the soil pH and a negative correlation with the NO3 contents, and EC.
Conclusions: Cultivation of plant form the Chrysanthemum family as green manure, using mainly the rhizomes was effective for the control of root rot disease of ginseng.
Background : Ginseng root rot caused by soil-borne pathogens, Cylindrocarpon destructans and Fusarium solani, is a major factors of replanting failure in ginseng cultivation. Some of the phenolic compounds detected in the soil of commercially cultivated American ginseng could inhibit the seed germination and seedling growth of American ginseng. Our study is to investigate the causes of replanting failure of ginseng by overhead flooding treatment and soil incorporation of ginseng fine root in soil infected with root rot pathogens. Methods and Results : To make soil occurring continuous cropping injury, 2-year-old ginseng infected with Cylindrocarpon destructans replanted in soil cultivated ginseng for 5 years. Treatment are as follows: 1) control, 2) water of 2ℓ was irrigate infected soil of 20ℓ, 3) ginseng fine root of 20g was mixed with infected soil of 20ℓ. Soil pH was increased, while other inorganic components were significantly reduced by overhead flooding treatment. Soil incorporation of ginseng fine root decreased soil pH, but increased EC, NO3, P2O5 and K, meanwhile, did not affected changes in organic matter, calcium, magnesium, sodium. Irrigation treatment in soil occurring replanted failure promoted distinctly above-ground growth of ginseng, and inhibited the occurrence of root rot because inorganic nutrient like NO3, P2O5 and K were decreased to optimal levels, and the density of soil pathogens could be reduced. Growth of ginseng was not inhibited, while root rot was promoted by soil incorporation of ginseng fine root. Conclusion : Irrigation treatment was effective in promoting the growth of ginseng and inhibited root rot distinctly. Ginseng fine root remaining in the soil after ginseng harvest did not affect the above-ground growth of ginseng, while promoted the occurrence of root rot.
Background: Crop rotation plays an important role in improving soil chemical properties, minimizing the presence of disease pathogens, and assists in neutralizing autotoxic effects associated with allelochemicals.
Methods and Results: Five rotation crops of sudan grass, soybean, peanut, sweet potato, and perilla were cultivated for one year with an aim to reduce yield losses caused by repeated cropping of ginseng. In 2-year-old ginseng grown in the same soil as a previous ginseng crop, stem length and leaf area were reduced by 30%, and root weight per plant was reduced by 56%. Crop rotation resulted in a significant decrease in electrical conductivity, NO3, and P2O5 content of the soil, whereas organic matter, Ca, Mg, Fe, Cu, and Zn content remained-unchanged. Soil K content was increased following crop rotation with sudan grass and peanut only. Rotation with all alternate crops increased subsequent ginseng aerial plant biomass, whereas root weight per plant significantly increased following crop rotation with perilla only. A significant positive correlation was observed between root rot ration and soil K content, and a significant negative correlation was observed between ginseng root yield and the abundance of actinomycetes. Crop rotation affected the soil microbial community by increasing gram negative microbes, the ratio of aerobic microbes, and total microbial biomass whereas decreases were observed in actinomycetes and the ration of saturated fatty acids.
Conclusions: In soil exhibiting crop failure following replanting, crop rotation for one year promoted both soil microbial activity and subsequent ginseng aerial plant biomass, but did not ameliorate the occurrence of root rot disease.
Background : Cylindrocarpon root rot, caused by Cylindrocarpon destructans and Fusarium solani, is a major disease which lead to replanting failure in ginseng garden. Chlamydospores of C. destructans, generated by poor environmental condition, can survived more than ten years in soil without host plant, ginseng. Density of soil pathogens gradually decreased as the progress of time since ginseng was harvested. Methods and Results : Soil chemical properties was analyzed from soil samples of 43 regions in farmer’s ginseng garden to study the variation of content and the correlation among inorganic contents. Soil samples of 24 regions was also analyzed to study correlation between progressed-year after ginseng harvest and soil chemical properties. Variation of soil chemical properties in descending order was Fe, Zn, P2O4, NO3, Mn. The content of Fe and Zn were great variation among inorganic chemicals of soil of farmer’s field. Electrical conductivity to induce physiological demage in excessive concentration showed highly significant positive correlation with the content of NO3 and K. As the progress of year after ginseng harvest, the content of organic matter and zinc was increased, while pH and Na were decreased in farmer’s field to cultivate ginseng. There were highly significant positive correlation between the progress of year after ginseng harvest and zinc content in farmer’s field to cultivate ginseng. Ratio of root rot of 2-year-old ginseng showed significant positive correlation with K content, and negative correlation in experimental field cultured by six rotation crops for one year. Conclusion : Root rot by soil pathogens was closely related with the content of potassium and zinc in soil chemical properties.
Background : Root diseases caused by Cylindrocarpon destructans and Fusarium solani decrease the yield and quality of ginseng. Cylindrocarpon root rot is a major disease caused by replanting failure in ginseng garden. Methods and Results : Solarization was done in the infested soil of the greenhouse for summer season (from July 24 to Autumn 31, 2014) after putting green manure (Sudan grass) and calcium cyanamide (CC) into the soil. Mycelium and conidia of C. destructans died at 4 0℃ after 15 hours, and 45℃ after 5 h, but it did not die at 35℃ after 15 h. Those of C. destructans died after keeping it for 2 hours daily at 40℃ for 9 days, and 45℃ for 8 days, but did not die at 38℃ for 9 days. Maximum soil temperature was 55.4℃ in 5 cm depth, 48.7℃ in 10 cm, 44.7℃ in 15 cm, 42.5℃ in 20 cm, and 31.9℃ in 30 cm by putting green manure into the soil and solarization. Reduction of sudan grass increased electrical conductivity (EC), organic matter, P2O5, K, and Mg, while decreased pH, NO3-N, and Na. Addition of calcium cyanamide and urea gave a negative effect on the growth of ginseng because EC and NO3-N were increased excessively than the optimal range. Solarization using green manure mixed with CC was the most effective in decreasing soil-borne pathogens of 2-year-old ginseng. But the root disease that occurred between single treatment of sudan grass and the treatment mixed with calcium cyanamide showed not a significant different. Addition of calcium cyanamide showed the decrease of root weight because leaves were dead early by a excessive increase of EC and NO3-N. Conclusion: Soil disinfection using green manure and solarization in greenhouse was effective in inhibiting root rot, however, it did not completely kill the soil-borne pathogens.
Background: Root diseases caused by Cylindrocarpon destructans and Fusarium solani decrease the yield and quality of ginseng. Cylindrocarpon root rot is a major disease caused by replant failure in ginseng fields. Methods and Results: Solarization of infested greenhouse soil was carried out during the summer season after applying green manure (Sudan grass) and Calcium Cyanamide (CC) on the soil. Mycelium and conidia of C. destructans died at 40℃ after 15 h, but they did not die at 35℃ after 15 h. They also died after keeping the soil at 40℃ for 2 h daily for 9 days, and at 45℃ for 8 days, but they did not die at 38℃ for 9 days. Maximum soil temperature was 55.4℃ at 5 ㎝ depth, 48.7℃ at 10 ㎝, 44.7℃ at 15 ㎝, 42.5℃ at 20 ㎝, and 31.9℃ at 30 ㎝ by incorporating green manure into the soil and using solarization. Solarization using green manure mixed with CC was the most effective in decreasing soil-borne pathogens of 2-year-old ginseng. However, the addition of CC decreased the root weight due to the increase in EC and NO3-N. Conclusions: Soil disinfection using green manure and solarization in a greenhouse environment was effective in inhibiting root rot, however, it did not completely kill the soil-borne pathogens.
Background : To control ginseng gray mold, farmers have mainly used inorganic chemical based fungicides. The recent emergence of fungicide resistance has reduced the effectiveness of such control methods. Such pesticides also carry additional problems, such as diffuse pollution.
Methods and Results : Six treatments of organic agricultural materials were tested for control of ginseng gray mold, CAPW (Chrysophanic acid + Phytoncide +Wood vinegar), EmEWV (Emodin + Ethanol +Wood vinegar), CEWV (Curcumin + Eugenol +Wood vinegar), Bacillus subtilis, soybean oil and sulfur. The control effect for gray mold by a single application of the agrochemical fungicide industrial Fenhexamid wettable powder (WP) was 84.4%. The control effect by CAPW, EmEWV and CEWV varied between 52.7 - 64.9%. The control effect by B. subtilis, soybean oil, and sulfur were 32.9 - 59.2%.
Conclusions : In the field tests, CAPW showed the highest control effects when used before, and at first stage of disease incidence, against ginseng gray mold.
Background : Ginseng is mainly grown as a break crop in paddy fields after rice has been cultured for approximately 4 - 5 years, because it reduces the negative effects of continuous rice cropping. However, physiological disorders, such as leaf discoloration, occur in ginseng grown in paddy fields with poor drainage and excessive levels of inorganic components.
Methods and Results : This study investigated the effect of ridge height on the growth characteristics and yield of 6 year old Panax ginseng. Ridge height was varied by making 20, 30, and 40 ㎝ high ridges in a pooly drained paddy field. Soil moisture content decreased, while electrical conductivity (EC) as the ridge height increased. The NO3, K, Ca, Mg, and Na levels also rose as ridge height increased, but organic matter and P2O4 levels did not. The leaf discoloration ratio rose as the ridge height increased, and root yield reached a peak when the ridge height was 30 ㎝.
Conclusion : A ridge height of 30 ㎝ in poorly drained paddy field improved ginseng growth by reducing leaf discoloration and increasing root survival, owing to more suitable soil moisture and EC levels.
To study the effect of crop rotation on the control of ginseng root rot, growth characteristics and root rot ratioof 2-year-old ginseng was investigated after the crops of 18 species were cultured for one year in soil contaminated by thepathogen of root rot. Fusarium solani and Cylindrocarpon destructans were detected by 53.2% and 37.7%, respectively, frominfected root of 4-year-old ginseng cultivated in soil occurring the injury by continuous cropping. Content of NO3, Na, andP2O5 were distinctly changed, while content of pH, Ca, and Mg were slightly changed when whole plant of crops cultured forone year were buried in the ground. All of EC, NO3, P2O5, and K were distinctly increased in soil cultured sudangrass, pea-nut, soybean, sunnhemp, and pepper. All of EC, NO3, P2O5, and K among inorganic component showed negative effect onthe growth of ginseng when they were excessively applied on soil. The growth of ginseng was promoted in soil cultivatedperilla, sweet potato, sudangrass, and welsh onion, while suppressed in Hwanggi (Astragalus mongholicus), Deodeok(Codonopsis lanceolata) Doraji (Platycodon grandiflorum), Gamcho (Glycyrrhiza uralensis), Soybean. All of chicory, lettuce,radish, sunnhemp, and welsh onion had effective on the inhibition of ginseng root rot, while legume such as soybean,Hwanggi, Gamcho, peanut promoted the incidence of root rot. Though there were no significant correlation, NO3 showedpositive correlation, and Na showed negative correlation with the incidence of root rot.