Resistance to extended-spectrum cephalosporin in Enterobacteriaceae is increasingly prevalent in South Korea. This study aims to explore the distribution of AmpC genes in Proteus mirabilis isolated from stray and hospital-admitted companion animals in South Korea. AmpC β-lactamases hold clinical significance due to its potential to facilitate antimicrobial resistance to cefoxitin, cefazolin, and most penicillins. A total of 163 bacterial isolates belonging to the Enterobacteriaceae family were collected from dogs (n = 158) and cats (n=5). Of them, 134 isolates were from hospital-admitted animals, while 29 isolates from stray animals. Boronic acid tests and antimicrobial susceptibility tests were conducted for an initial screening to detect AmpC β-lactamase resistant P. mirabilis. Gene-specific PCRs were conducted to identify the type of AmpC genes, which include six groups (MOXM, CITM, DHAM, ACCM, EBCM, and FOXM), in the resistant isolates. The boronic acid disk tests revealed 45 (27.6%) positive isolates out of 163 isolates tested. Of these 45 isolates, six were determined to harbor the EBCM gene, 13 for CITM, one for FOXM, and one for DHAM by single detection PCR. No isolates carried for ACCM or MOXM. Thus, a total of 21 out of 163 isolates (12.9%) were demonstrated to possess AmpC genes. No isolates contain more than one group of AmpC gene family. A significantly higher percentage of P. mirabilis was found to possess AmpC genes compared to past studies. Therefore, the increasing trend in antimicrobial resistance in P. mirabilis indicates a dire need to monitor antimicrobial prescription in the veterinary field.
Unstable Epigenetic reprogramming was DNA methylation, imprinting, RNA silencing, co-valent modifications of histones and remodelling by other chromatin-associated complexes. After fusion with an enucleated oocyte, a differentiated somatic cell can restructure its genetic program and acquire totipotent characteristics. However, these cases happen only with low frequency. primordial germ cells (PGC) was effectively remove of epigenetic modifications in the genetic totipotency which is necessary for the development. The present study was in vitro development of reconstruct PGC NT embryos compared with somatic cell NT embryos. The rate of cleavage did not differ between NT embryos from PGC and somatic cells (87.26 vs 91.36%). However, the rate of development to the blastocyst stage was significantly higher in PGC cell NT than somatic cell NT (31.03 vs 19.27%). PGC from a slightly younger stage of development have succeed to promote normal development of recipient eggs. This difference in results between germ cell and somatic cell nuclear transfers could only be a reflection of intimate differences in their reprograming. These results suggest that PGC NT embryos are significantly higher for the in vitro development. Furthermore, These study may represent an approach towards achieving better production of transgenic animal.
Radish (Raphanus sativus L.) is a widely-consumed root vegetable that is grown worldwide. To utilize the radish genetic resources for breeding research, we collected radish germplasms and evaluated their morphological and genetical characteristics. Here, phylogenetic relationship of 288 accessions were analyzed using 16 SSR markers and classified cytoplasm male sterility (CMS) types using cpDNA-based molecular markers. To create a collection of 288 accessions, 188 and 73 accessions were selected from RDA-Genebank (Korea) and NIAS-Genebank (Japan), respectively, after generation advancement for the accessions with low uniformity. In addition, 27 elite lines currently used for commercial radish breeding programs were included. In the result of phylogenetic analysis, 288 accessions were clustered into 5 major groups corresponding to the morphological traits and origins at the similarity coefficient value of 0.51. Analysis of CMS types revealed that majority of accessions were determined as DBRMF1 and DBRMF2 mitotypes, 15 accessions to Ogura and 4 accessions to DCGMS mitotypes. Further genetic analysis for radish germplasm will be valuable in assisting radish f1 hybrid breeding.
Environmental stresses including drought, extreme temperatures, and high salinity are major factors that severely limit crop productivity worldwide. To overcome yield loss due to these environmental stresses, a large number of researches have been conducted to understand how plants respond to and adapt these environmental stresses. Posttranscriptional regulation as well as transcriptional regulation of gene expression is recognized as a key regulatory process in plant stress responses, and these cellular processes are regulated by diverse RNA-binding proteins (RBPs). Over the last years, we have extensively investigated the functional roles of RBPs that harbor an RNA-recognition motif at the N-terminal half and a glycine-rich region at the C-terminal half (glycine-rich RNA-binding proteins, GRPs), zinc finger-containing GRP, and cold shock domain proteins (CSDPs) in Arabidopsis thaliana, rice (Oryza sativa), wheat (Triticum aestivum), and rapeseed (Brasicca napus) under stress conditions. Our comparative analysis demonstrated that certain family members display RNA chaperone function during stress adaptation process in monocotyledonous plants as well as in dicotyledonous plants. These findings point to the importance of the regulation of mRNA metabolism in plant response to environmental stresses and shed new light on the practical application of these RBPs to develop stress-tolerant transgenic crops.
A new rose variety, ‘Venus Berry’ was selected from the progenies of a cross between ‘Boy Friend’ and ‘GSR10315’ by rose breeding team of the Gyeonggi-Do Agricultural Research and Extension Services(GARES) in 2011. ‘Venus Berry’ was crossed in 2007 and seedlings were produced. After the test of specific characters from 2008 to 2011, it was finally selected and named. ‘Venus Berry’ was developed because of distinctive characters such as growth uniformity and high yielding potential. The petal of flower is so thick and has no scratch. A standard type with large sized flower, it has light pink(Red Purple Group 69C) color flower. ‘Venus Berry’ takes 45 days from pruning to blooming and cut flower productivity was 194.1 stems/m2 in a year. The length of cut flower was long with 65.5 cm. It has 10.2 cm in flower diameter and 43.6 in petal numbers per flower. Vase life of the this cultivar could be as long as 12 days.
A new rose variety, ‘Love Letter’ was selected from the progenies of a cross between ‘Red Giant’ and ‘Ensemble’ by rose breeding team of the Gyeonggi-Do Agricultural Research and Extension Services(GARES) in 2011.
‘Love Letter’ was crossed in 2007 and seedlings were produced. After the test of specific characters from 2008 to 2011, it was finally selected and named. ‘Love Letter’ was developed because of distinctive characters such as growth uniformity and high yielding potential. A standard type with large sized flower, It has red(Red Group 46A) color flower. ‘Love Letter’ takes 43 days from pruning to blooming and cut flower productivity was 152 stems/m2 in a year. The stems of cut flower have no thorn and the length was long with 70.5 cm. It has 9.3 cm in flower diameter and 32.4 in petal numbers per flower. Vase life of the this cultivar could be as long as 12 days.