The study investigated a method of synthesizing a pitch suitable for making activated carbon using fluid catalytic crackingdecant oil (FCC-DO), a high-purity carbon precursor from oil refining. We kept the reaction time and catalyst amount constant while varying the temperature to investigate its impact on pitch synthesis and the resulting physical and activation properties. Previous research established that materials added during pitch synthesis can affect the properties of both the pitch and resulting activated carbon. This study examined the addition of polyethylene terephthalate (PET) to FCC-DO-based pitch. The results indicated significant changes in properties with PET addition and temperature variation that ensured stable activated carbon quality. At temperatures of 390 °C or higher, the specific surface area of the activated carbon stabilized between 2680 and 2740 m2/ g. Waste PET, a recyclable plastic, was chosen due to its compatibility and thermodynamic suitability for pitch synthesis. Importantly, adding PET didn't generate additional waste or degrade the physical properties of the activated carbon.
A new variety of Alfalfa (Medicago sativa L.), named 'Alfaking' was developed between 2015 and 2023 at the Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea. The variety was produced through artificial hybridization, with ‘Paravivo’ serving as the maternal line and ‘WL514’ as the paternal line. ‘Alfaking’ underwent field tests across four regions (Cheonan, Pyeongchang, Jeongeup, and Jinju) to evaluate its agronomic characteristics and forage production over two years (2022-2023). The dry matter yield of ‘Alfaking’ reached 22,516 kg/ha, which is 11% higher than the control variety, ‘Vernal.’ ‘Alfaking’ exhibited 2.1% higher crude protein content than ‘Vernal’ in forage nutritive value. The development of this new alfalfa variety, which exhibits excellent adaptability to challenging environmental conditions, is expected to enhance forage cultivation and productivity in Korea.
Due to climate change and the expansion of cultivation areas through the use of reclaimed land, changes in the selection of Italian ryegrass (Lolium multiflorum L.) varieties are anticipated. This study was conducted to compare the growth characteristics before overwintering, productivity, and feed value of eight Italian ryegrass varieties with different maturing stages under the same cultivation conditions. The variety ‘Lm4ho’, a medium-maturing type, showed superior growth characteristics before overwintering, including plant height, leaf length, and leaf width. The heading date was advanced in all varieties, with a greater degree of advancement observed in varieties with earlier heading dates. When harvested at the heading stage of the early-maturing types, the dry matter yield of the medium-maturing types was not significantly different from that of the early-maturing types. However, when harvested at the heading stage of the medium-maturing types, the dry matter yield was higher than that of the early-maturing types. Specifically, ‘Lm4ho’ produced 2,518 kg/ha more than ‘Kowinearly’. The late-maturing variety IR901 and the medium-maturing varieties ‘Lm4ho’ and ‘Kowinmaster’ showed statistically superior dry matter yields. In terms of forage value, including crude protein (CP), total digestible nutrients (TDN), and relative feed value (RFV), the medium- and late-maturing types outperformed the early-maturing types. Notably, ‘Lm4ho’, ‘IR 901’, and ‘Hwasan 104’ were evaluated as suitable varieties for high-quality forage production. These results suggest that medium-maturing varieties may be suitable for double cropping in the central regions due to climate change. We propose that future breeding of Italian ryegrass should expand from focusing on cold tolerance and early-maturing varieties to include mediumand late-maturing varieties that consider both productivity and quality.
얕은 물에서 선박과 바닥의 상호작용으로 인해, 제한이 없는 깊은 물에서 운항할 때와 비교하여 저항이 증가하는 현상이 발생 한다. 이러한 천수효과에 의해 증가하는 저항은 주로 조파저항에 기인하기 때문에, 본 연구에서는 유람선을 대상으로 LCG(Longitudinal Center of Gravity)의 위치 변경을 통해 성능을 최적화하여 조파저항을 감소시키는 것을 목표로 진행하였다. 수치해석 시뮬레이션을 통해 LCG 위치를 최적화하여 저항의 최소값을 찾고, 이후 수심의 깊이에 따른 영향을 분석하였다. 분석 결과, 37.5% - 52.5% Lpp의 영역에서의 LCG 변화는 총 저항에 큰 영향을 주었으며, 깊은 물의 조건에서는 총 저항의 최대값과 최소값을 비교하였을 때, 72.67%의 큰 차이를 보이 는 반면, 얕은 물 조건에서는 그 차이가 62.97% 정도로 비교적 낮은 차이를 보인다. 수심의 깊이에 따른 효과는 수심이 낮을수록 총 저항 이 증가하는 경향을 보였다. 깊은 물과 비교하여 1.5m의 얕은 물에서는 총 저항이 최대 67.68% 가량 증가하는 것으로 분석되었다. 이 경우 총 저항 증가의 주요 원인은 전체 저항의 84.99%를 차지하는 조파저항에 의한 것으로 판단된다.
One of the key challenges for the commercialization of carbon nanotube fibers (CNTFs) is their large-scale economic production. Among CNTF spinning methods, surfactant-based wet spinning is one of the promising techniques for mass producing CNTFs. Here, we investigated how the coagulation bath composition affects the spinnability and the properties of CNTFs in surfactant-based wet spinning. We used acetone, DMAc, ethanol, and IPA as coagulants and analyzed the relationship between coagulation bath composition and the properties of CNTFs in terms of kinetic and thermodynamic coagulation parameters. From a kinetic perspective, we found that a low mass transfer rate difference (MTRD) is favorable for wet spinning. Based on this finding, we mixed the coagulant bath with solvent in a proper ratio to reduce the MTRD, which generally improved the wet spinning. We also showed that the coagulation strength, a thermodynamic parameter, should be considered. We believe that our research can contribute to establishment of surfactant-based wet spinning of CNTFs.
The electrochemical properties of a CFX cathode were improved by defluorination of the surface with a N2 plasma and using a silica wafer. Compared to the N2 plasma treatment alone, when the CFX and silica were reacted together, the C-F bonds were modified and the surface was etched efficiently, so defluorination was enhanced. An electrochemical analysis confirmed that Half-cells prepared by treating CFx and silica with nitrogen plasma exhibited a capacity of about 400 mAh/g at 5C. In addition, it was confirmed that the loss of charge transfer was reduced by up to 71% compared to that for pristine CFX. As shown by a GITT analysis, when the CFx and silica were treated with N2 plasma together, the ion conductivity gradually increased due to a decrease in the ion diffusion barriers and the formation of a carbon layer. Therefore, this is a simple and effective way to improve the conductivities of CFX cathode materials with the energy of a N2 plasma and the silica-fluorine reaction.
This study aimed to reconfirm the sex change scale and pattern of Tegillarca granosa. Although the sex ratio (female : male, female proportion) of T. granosa was 1:2.32 (30.2%) at the initial stage (2011) of the study, it was 1:0.94 (51.5%) after one year (2012) in the same population. The increase of the female proportion was greater in the 2+ year class (23.0%) when compared to the 1+ year class (19.2%). Overall, sex change ratio of 37.6% was observed in this population of T. granosa. The sex change ratio of the 2+ year class (39.3%) was higher than that of the 1+ year class (35.3%). And sex change ratio in the males (42.2%) was higher than that in the females (26.9%). The female proportion was the opposite of the result from 2006~2007, and one of the causes was presumed to be the difference in cumulative water temperature during the gonadal inactive stage (winter).
It was found in this study that fluorinated microporous carbon aerogels with enhanced hydrophobicity could be successfully prepared by direct fluorination to separate water-in-oil emulsions at high flux. The fluorinated carbon aerogel (F-CA) surface treated by the fluorination method had a water contact angle of 151.2° and could immediately absorb oil. In addition, the unique network structure of F-CA and its hydrophobicity allow surfactant-stabilized water-in-oil emulsions to be effectively and simply separated under gravity without requiring external forces such as vacuum or pressurization. The network structure of F-CAs consists of randomly connected spherical particles that form fluorinated permeation channels, which induce high flux during emulsion separation. The F-CA spherical particles have nanosized pores and high hydrophobicity, which repel and trap water droplets to increase the separation purity. Therefore, F-CA exhibited excellent performance, such as high filtrate purity (up to 99.9954%) and flux (up to 11,710 L/m2h). Furthermore, F-CA reusability was demonstrated as it did not lose its hydrophobicity and maintained its performance even after repeated use. This type of aerogel has great potential to be utilized throughout various environmental fields, including oil remediation.
In this study, laser-induced graphene oxide (LIGO) was synthesized through a facile liquid-based process involving the introduction of deionized (DI) water onto polyimide (PI) film and subsequent direct laser irradiation using a CO2 laser (λ = 10.6 μm). The synthesized LIGO was then evaluated as a sensing material for monitoring changes in humidity levels. The synthesis conditions were optimized by precisely controlling the laser scribing speed, leading to the synthesis of LIGO with different structural characteristics and varying oxygen contents. The increased number of oxygen-containing functional groups contributed to the hydrophilic properties of LIGO, resulting in a superior humidity sensing capabilities compared with laser-induced graphene (LIG). The LIGO-based sensors outperformed LIG-based sensors, demonstrating approximately tenfold higher sensing responsivity when detecting changes at each humidity level, along with 1.25 to 1.75 times faster response/recovery times, making LIGO-based sensors more promising for humidity-monitoring applications. This study demonstrated laser ablation in a renewable and natural precursor as an eco-friendly and energy-efficient approach to directly synthesize LIGO with controllable oxidation levels.
수염풍뎅이(Polyphylla laticollis manchurica)는 과거에는 흔히 발견되었으나, 1970년대 이후 한반도 내 개체수 가 급격히 감소하여 2005년 환경부에 의해 멸종위기 야생생물 Ⅰ급으로 지정되었다. 또한 해당종의 분자생물학적 연구는 멸종위기종이라는 특성으로 인해 제한적으로 진행되었다. 그로 인해 NCBI 등 공공 데이터베이스에서 제공되는 서열정보들 또한 부족한 실정이다. 이 연구는 이러한 한계를 극복하고 수염풍뎅이의 유전적 특성을 규명하기 위해 생물정보학적 기술을 활용하여 전사체 분석을 진행하였다. Illumina HiSeq 2500 플랫폼을 사용하여 53,433,048개의 RNA reads를 얻었으며, Trinity와 TGICL을 이용한 De novo 어셈블리 분석을 통해 18,172개의 unigenes를 생성하였다. 생성된 unigenes는 GO, KOG, KEGG, PANM DB를 활용하여 annotation을 진행하였다. 그 결과, GO 분석에서는 ‘binding and catalytic activities’와 관련된 항목이 높은 발현을 보였으며, KOG 분석의 경우 ‘Cellular Processes and Signals’ 범주가 높은 비율을 나타내었다. KEGG 분석을 통해 2,118개의 unigenes가 metabolic 카테고리에 annotation된 것을 확인하였다. SSR 모티프 분석에서는 AT/AT (42.90%) 모티프, AAT/ATT (13.13%) 모티프 순으로 많이 나타나는 것을 확인하였다. 이 연구를 통해 분석한 결과 들을 이용하여 유전자원 및 종 정보를 실시간 제공 및 정보 공유가 가능하도록 Database 및 web-interface를 구축하 였으며, 이러한 자료들은 국내 멸종위기종인 수염풍뎅이의 고유한 유전적 특성을 발굴 및 확보할 수 있는 기반자 료로써 활용될 수 있을 것으로 사료된다.