This paper presents experimental results for evaluating bond strength of FRP Hybrid Bars(HYB). In order to confirm the bond strength of HYB, direct bond strength tests were performed on 20 specimens. 20 specimens made of deformed steel bars were also tested for relative comparison. HYB and deformed steel bars were embedded in a concrete block with a size of 200 mm and different attachment lengths were applied depending on the diameter of the reinforcing bars. During the test, load and relative displacement(slip) were measured and the load-displacement behaviors of all specimens were analyzed from the measured results. The maximum bond strength of deformed steel bars were higher than that of HYB regardless of its diameter. However, after the maximum load, the deformed steel bars were more dominant than the HYB in the sudden load reduction tendency.
This paper presents experimental and analytical results for predicting tensile behavior of FRP Hybrid Bar(HYB). In order to confirm the tensile behavior of HYB wrapped with glass fiber reinforced polymer(GFRP) on deformed rebar, direct tensile tests were performed on 8 specimens. The diameter of the HYB was considered as a test variable and the tensile load, displacement, and tensile strain of each specimen were measured by tensile test. In order to predict the tensile behavior of HYB, numerical analysis based on tensile model of each material was performed. The tensile models of reinforcing bar, glass fiber, and resin, which are the constituent materials of HYB, are assumed to be simple shapes according to their material properties. The results of the numerical analysis through the strain compliance condition of each material were compared with the experimental results and both results showed consistent trends. The experimental and analytical ratios for yield and ultimate loads were 1.02 and 1.00, respectively, and the coefficient of variation were 3.61 and 2.54, respectively. However, a maximum of about 9 mm error occurred due to the slip generated by the direct tensile test in the comparison between the experimental results and the analytical results for the tensile displacement.
ber reinforced polymer (FRP) reinforcing bars for concrete structure have been extensively investigated and a number of FRP bars are commercially available. However, major shortcoming of the existing FRP bars is low elastic modulus compared to conventional steel bars. Because of these reasons, FRP Hybrid Bar which have the concept of material hybridization(synthetic resins, deformed bar, glass fiber etc) for concrete structures have been developed. One of main features of this bar is corrosion resistance and this is important to confirm this anti-corrosion capacity of FRP Hybrid Bar. In this study, galvanic corrosion current behavior of 3 types of specimens, including two types of FRP Hybrid Bars and one conventional steel rebar, was investigated under the 0%, 1.5%, 3% and 6% salt water ratio condition. The result of this study can be used to evaluate the applicability of FRP Hybrid Bar to concrete structures.
GFRP(Glass Fiber Reinforced Polymer Plastic) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. In this study, the various rib and pitch distance of hybrid fiber GFRP bars were evaluated by experimental method. From the test result, thirty two types of FRP hybrid bars such as spiral and cross type with the dimension of rib geometry were fabricated. To evaluate the bond properties of them, direct pull-out test was performed. All testing procedures including specimen preparation, set-up of test equipment and measuring devices were made in accordance with the recommendations of ASTM D 7913. From the test results, it was found that cross type hybrid GFRP reinforcing bars showed the highest bond strength than that of the others due to the higher relative rib area.
GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.
Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.
Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.
본 연구는 TNT 오염토양을 콤포스팅과 슬러리생물상으로 처리 후 형광미생물을 이용하여 독성을 평가하고자 실시되었으며, 운전기간은 각각 45일과 200일이었다. 콤포스팅 처리 후 C/N비 조절용으로 아세톤을 첨가한 경우의 GL값은 40으로 글루코오스를 첨가한 경우(GL 80)보다 낮아 독성이 더 많이 제거되었다. 혐기성, 혐기성/호기성, 그리고 호기성 조건의 슬러리생물상으로 처리 후 GL값은 각각 6, 8, 4로 나타나 독성이 거의 없는 수준까지 크게 감소하였다. GL값과 S. typhimurium 수의 상관도는 1차식으로 표현이 가능하였으며, 생물학적 처리에 따른 미생물독성과 돌연변이성 변화는 비교적 높은 상관도 (r > 0.8890)를 나타내었다.
Recently, underground pipes are utilized in various fields of applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. Most of pipes are installed for long-term purposes and they should be safely installed in consideration of installation conditions because there are unexpected various terrestrial loading conditions. In this paper, we present the result of investigation pertaining to the structural behavior of glass fiber reinforced thermosetting polymer plastic (GFRP) flexible pipes buried underground. The mechanical properties of the GFRP flexible pipes produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, ring deflection is measured by the field tests and the finite element analysis (FEA) is also conducted to simulate the structural behavior of GFRP pipes buried underground. From the field test results, we predicted long-term, up to 50 years, ring deflection of GFRP pipes buried underground based on the method suggested by the existing literature. It was found that the GFRP flexible pipe to be used for cooling water intake system in the nuclear power plant is appropriate because 5% ring deflection limitation for 50 years could be satisfied.
이 연구는 새로운 형태의 FRP-콘크리트 합성말뚝인 하이브리드 CFFT(HCFFT)를 개발하는 과정의 일부이다. 이 논 문에서는 CFFT와 HCFFT의 압축강도실험을 통하여 구조적 거동을 분석하였다. 압축강도실험에 앞서 PFRP와 FFRP 재료의 역학적 성질을 조사하였다. HCFFT 압축강도실험은 콘크리트 강도와 FFRP의 두께를 변수로 하여 실험을 수 행하였다. 그리고, FFRP 두께를 변수로 PFRP를 제외한 CFFT 실험체를 제작하고 실험을 수행하여 HCFFT와 비교· 분석하였다. 실험 결과, HCFFT의 압축강도는 CFFT에 비하여 11~47% 향상되는 것으로 나타났다. 실험구간내의 필 라멘트 와인딩 FRP 보강두께의 증가에 따른 HCFFT의 압축강도는 선형으로 증가시키는 것으로 나타났다. 또한 실 험체와 동일한 조건의 유한요소해석을 수행하였다. 해석결과는 실험결과에 비하여 모든 시편에서 약간 작은 값을 보였으며, 0.14%에서 17.95%까지의 오차범위 내에 있음을 알 수 있었다.
이 연구에서 GRP 관의 하중-처짐 거동을 조사, 보고하였다. 지중매성 GRP관은 높은 내화학성, 높은 부식저항성, 경 량성, 관표면의 매끄러움, 지반-관의 상호작용 고려에 따른 경제성 등의 탁원한 역학적, 물리적 특성들로 인해 건설 현장에서 광범위하게 사용되고 있다. 지중에 매설되는 연성관을 설계하기 위해서는 ASTM D 2412 (2010)에 따라야 한다. ASTM D 2412 (2010)에 따라 설계할 경우, 관의 원강성 (PS)을 편평시험에 따라 먼저 결정해야 하는데, 이 시 험이 귀찮고 노동력을 필요로 한다. 이러한 문제를 해결하기 위해 UTM에 설치된 형태의 GRP관의 하중-처짐 거동 을 유한요소법에 따라 모사하였으며, 유한요소법에 의한 모사에는 재료의 탄성계수와 단면의 기하학적 치수 등 기 초적인 자료를 사용하였다. 이와 같은 연구로부터, 관재료가 관의 단면내에서 비교적 일정하지 않음에도 불구하고 수직방향의 관변형이 3%와 5%가 발생할 경우, 편평시험과 수치해석적 연구 결과가 15%이내의 차이로 하중의 예측 이 가능함을 알 수 있었다.
최근 지중매설 유리섬유복합관(GRP관)은 유해한 환경에서 뛰어난 성능을 보유하고 있어 하수관거용으로서 사용이 증가 되고 있다. 또한 지중에 매설되어 있는 조건에서 기존의 콘크리트관 등 강성관에 비해 구조적 성능이 뛰어나 다. 지중매설 GRP관은 주로 상부에 작용하는 상부토압과 활하중에 의한 압축응력에 의해 원주방향으로 변형이 일 어나게 된다. GRP관의 구조적 거동은 매설토와 주변의 지반의 성질에 따라 다르게 설계되어야 한다. GRP관의 설 계는 Spangler 의 변형량 계산식을 Watkins에 의해 수정되어 사용되고 있다. 이 연구에서는 Watkins의 관변형 추정 식에 GRP관의 재료적 특성을 고려하여 관변형량을 예측하였다.
이 논문에서는, CFT 감재-콘크리트 합성말뚝과 FRP를 원주방향으로 보강한 FRP-콘크리트 합성말뚝 (CFFT)과 관련 하여 발생하는 문제점들을 완하시키기 위해 새롭게 제안된 콘크리트 채움 원형 FRP 말뚝 (HCFFT)의 구조적 거동 에 대한 실험적 연구결과를 발표하였다. 연구를 통해 기존의 CFT와 CFFT 말뚝과 비교하여 새로 제안한 HCFFT 말 뚝이 말뚝 기초의 시공에서 축하중과 휨모멘트를 포함하는 상부하중을 지반에 효과적으로 전달할 수 있음을 알 수 있었다.
Magnetite and inorganic sludge were mainly composed of Fe2O4 and Fe2O3, respectively. Initial specific surface areas of magnetite and inorganic sludge were 130 m2/g and 31.7 m2/g. CO2 decomposition rate for inorganic sludge was increased with temperature. Maximum CO2 decomposition rates were shown 89% for magnetite at 350℃ and 84% for inorganic sludge at 500℃. Specific surface area for magnetite was not varied significantly after CO2 decomposition. However, specific surface area for inorganic sludge was greatly decreased from initial 130 m2/g to approximately 50~60 m2/g after reaction. Therefore, it was estimated that magnetite could be used for CO2decomposition for a long time and inorganic sludge should be wasted after CO2 decomposition reaction.
In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.
This research was conducted to estimate the characteristics of carbon dioxide decomposition using an inorganic sludge. The inorganic sludge was composed of high amount (66.8%) of Fe2O3. Hydrogen could be reduced with 0.247, 0.433, 0.644, and 0.749 at 350, 400, 450, and 500℃, respectively. The carbon dioxide decomposition rates at 250, 300, 350, 400, 450, and 500℃ were 32, 52, 35, 62, 75, and 84%, respectively. High temperature led to high reduction of hydrogen and better decomposition of carbon dioxide. The specific surface area of the sludge after hydrogen reduction was higher than that after carbon dioxide decomposition. The specific surface area of the sludge was more decreased with increasing of temperature.
This research was performed to evaluate heavy metal leaching characteristics of the sludge from paper mill process with sintering temperature. Heavy metal leaching of the sludge was characterized with Korean Leaching Test and Toxicity Characteristic Leaching Procedure. The test sludge was composed of 70.72% of moisture, 9.5% of volatile solids and 9.76% of fixed solids. As a result of XRF analysis, Fe was the highest inorganic element in approximately 83%, which implies the recycling possibility of the sludge in reuse of Fenton chemicals and artificial lightweight aggregate. Leaching of heavy metals from sintered sludge was lower than the dry ones. However, there was no significant difference in leaching characteristics between the sludges sintered at 350℃ and 650℃. Zn and Fe were leached more greatly in TCLP and KLT methods respectively.
The present paper deals with gaseous carbon dioxide separation by a commercial adsorbent: X-type zeolite. Experimental work was carried out at an ambient condition focusing on how well meeting to the national guideline. A few types of reactor and material were examined, and practical capability was found in a granular bed type reactor with the flow of 2.5 CMM. An optimum design of reactor and adsorbent could provide the required concentration, less than 2500 ppm, for the continuous operation up to 10 hours. More work including automatic regeneration is now underworking.
This study was conducted to evaluate the biofiltration treatment characteristic for benzene vapor gas. Compost and calcium silicate porous material were used as biofilter fillers. Gas velocity and empty bed retention time were 15 m/hr and 4 min, respectively. Benzene gas removal efficiency of P-Bio (calcium silicate porous material with inoculation) was the highest and maintained in over 98%. After shock input of benzene gas, the removal efficiency of P-Bio biofilter was recovered within 2 days, while 5 days were taken in CP-Bio (compost + calcium silicate porous material mixture with inoculation) and CP (compost + calcium silicate porous material mixture without inoculation) biofilters. The removal efficiency of P-Bio biofilter was near 100% in the loading rate of 〈85g/m3(filling material)/hr, It was shown that the maximum elimination capacities of P-Bio, CP-Bio, and CP biofilters were 95, 69, and 66 g/m3(filling material)/hr, respectively. Microbial number of P-Bio, which the number was the lowest at start-up, was 3 orders increased on operational day 48. CO2 was generated greatly in order of P-Bio, CP-Bio, and CP biofilters.
This study was performed to evaluate characteristic of acid mine drainages (AMD) from abandoned mines in Kangwon-Do. Youngdong abandoned mine, and Soo and Hambaek abandoned mines in Hamtae were selected for this study. Average pHs of the mine drainages were 3-6.5, and those of Youngdong and Hambaek drainages were very acidic as 3-4. SO4-2 of Youngdong and Hambaek drainages were over 1,600 mg/L, which higher than average value (845 mg/L) of acid mine drainages in nationwide. Cu, Mn, and As concentrations of the drainages were lower than ‘Pollutant Discharge Permission'. Fe concentrations of Youngdong and Hambaek drainages were approximately 96 mg/L, which were two times higher than average value in nationwide. From correlation analysis using SPSS, significant correlation was not discovered between 'contaminants' analyzed in three acid mine drainages.