Since their initial development in 2012, triboelectric nanogenerators (TENGs) have gained popularity worldwide as a desired option for harnessing energy. The urgent demand for TENGs is attributed to their novel structural design, low cost, and use of large-scale materials. The output performance of a TENG depends on the surface charge density of the friction layers. Several recycled and biowaste materials have been explored as friction layers to enhance the output performance of TENGs. Natural and oceanic biomaterials have also been investigated as alternatives for improving the performance of TENG devices. Moreover, structural innovations have been made in TENGs to develop highly efficient devices. This review summarizes the recent developments in recycling and biowaste materials for TENG devices. The potential of natural and oceanic biowaste materials is also discussed. Finally, future outlooks for the structural developments in TENG devices are presented.
The oriental fruit fly, Bactrocera dorsalis, is one of important agricultural pests that attack a wide range of fruits and vegetables. Adult female can cause direct damage by laying eggs under the skin of fruits and vegetables. The eggs hatch into larvae that feed in the decaying flesh of the agricultural crops. Damaged fruits and vegetables quickly become inedible or dropto the ground. We investigated the oviposition characteristics of B. dorsalis on twelve fruits and seven vegetables. B. dorsalis marked the oviposition places on every crop tested. B. dorsalis laid eggs into the fruits and vegetables except lemon and passionfruit. We examined the adult emergence from infested crops.