검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 553

        333.
        2005.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        7xxx series Al alloy has the most attractive properties including its excellent high specific strength, stress corrosion cracking and corrosion-resistance. However, in case of the Al-Zn system, the liquid phase has a transient aspect because of the high solid solubility of Zn in Al. Therefore, transient liquid phase sintering behavior was observed during the sintering process. And the amount of liquid and its duration were influenced by the process variables including heating rate and final sintering temperature. At high heating rates(), the liquid fraction increased during sintering because diffusion was minimized and therefore local saturation could easily occur. The sintered density increased with increasing heating rate.
        4,000원
        334.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to understand mechanical alloying processing of Al-Fe alloy system. The thermal stability of mechanically alloyed Al-Fe alloy was intended to be enhanced by SPS process. Various analytical techniques including particle size analysis, density measurement, micro-Vickers hardness test, SEM, TEM, and X-ray diffractometry were adopted to find optimum processing conditions for mechanical alloying and subsequent SPS and to estimate thermal stability of the prepared alloy. It was found from the treatment of mechanically alloyed Al-8wt.%Fe powder mixture that needle-shaped precipitates was formed in the Al-Fe matrix, and the alloy compact showed enhanced densification and reached its full density with little loss of its fine microstructure. After heat treatment at , it was also shown that the thermal stability of Al-8wt.%Fe alloy fabricated in the present study was enhanced, which was due to its fine microstructure developed by fast densification of SPS.
        4,000원
        335.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to Al-Fe-Cr and Al-Fe-Mo powder mixture to investigate effects of Cr and Mo addition on thermal stability of Al-Fe, and thereby to enhance its thermal stability up to . Various analytical techniques including micro-Vickers hardness test, SEM, TEM, X-ray diffractometry and corrosion test were carried out. It was found that addition of Cr and Mo to Al-Fe system played a role of grain growth inhibitor of matrix Al and some precipitates such as during SPS and subsequent heat treatment. The inhibition of grain growth resulted in increased Vickers hardness and thermal stability up to comparing to those of Al-Fe alloy system.
        4,000원
        336.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to fabricate a high density sintered body of ITO, nano-sized ITO powders were synthesized by coprecipitation methods. Aqueous solutions of indium and tin salts were mixed and coprecipitated by changing their pH. Coprecipitated ITO powders possessed 20-30 nm crystallite size and a relatively high BET value however, aggregation of particles were occurred. Therefore, a novel recrystallization technique was applied in order to eliminate the aggregates. The recrystallized ITO material consists of a little bit larger needlelike crystals, , and it possesses a higher BET value compared to the plain coprecipitated material . Metastable phase formation and higher content of aggregated particles were observed in the coprecipitated materials. Densification was complete after 5 hour sintering at for the recrystallized powders while densities of the coprecipitated powders were below
        4,000원
        337.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using the nano Fe powders having 50 nm in diameter, Fe compact bodies were fabricated by injec-tion molding process. The relationship between microstructure and material properties depending on the volume ratio of powder/binder and sintering temperature were characterized by SEM, TEM techniques. In the compact body with the volume percentage ratio of 45(Fe powder) : 55(binder), which was sintered at the relative density was about and the values of volume shrinkage and hardness were about and 242.0 Hv, respec-tively. Using the composition of 50(Fe powder) : 50(binder) and sintered at the values of relative density, volume shrinkage and hardness of Fe sintered bodies were and 152.8 Hv, respectively. They showed brittle fracture mode due to the porous and fine microstructure.
        4,000원
        338.
        2004.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical property of hot-pressed composites with a different temperature for atmosphere changing from H to Ar have been studied. When atmosphere-changed from H to Ar gas at 145, the hot-pressed composite was characterized by inhomogeneous microstructure and low fracture strength. On the contrary, when atmosphere-changed at low temperature of 110 the composite showed more homogeneous microstructure, higher fracture strength and smaller deviation in strength. Based on the thermodynamic consideration and microstructural analysis, it was interpreted that the Cu wetting behavior relating to the formation of CuAlO is probably responsible for strong dependence of microstructure on atmosphere changing temperature. The reason for a strong sensitivity of fracture strength and especially of its deviation to atmosphere changing temperature was explained by the microstructural inhomogeneity and by the role of CuAlO phase on the interfacial bonding strength.
        4,000원
        339.
        2004.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the focus is on the analysis of the effect of the mold dimensions on the temperature distribution of a die during plasma activated sintering. The temperature distribution of a cylindrical mold with various dimensions was measured using K-type thermocouples. The temperature homogeneity of the die was studied based on the direction and dimensions of the die. A temperature gradient existed in the radial direction of the die during the plasma activated sintering. Also, the magnitude of the temperature gradient was increased with increasing sintering temperature. In the longitudinal direction, however, there was no temperature gradient. The temperature gradient of the die in the radial direction strongly depended on a ratio of die volume to punch area
        4,000원